Extensions 1→N→G→Q→1 with N=C8 and Q=C4×S3

Direct product G=N×Q with N=C8 and Q=C4×S3
dρLabelID
S3×C4×C896S3xC4xC8192,243

Semidirect products G=N:Q with N=C8 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C81(C4×S3) = C42.16D6φ: C4×S3/C6C22 ⊆ Aut C896C8:1(C4xS3)192,269
C82(C4×S3) = D24⋊C4φ: C4×S3/C6C22 ⊆ Aut C896C8:2(C4xS3)192,270
C83(C4×S3) = C8⋊(C4×S3)φ: C4×S3/C6C22 ⊆ Aut C896C8:3(C4xS3)192,420
C84(C4×S3) = D249C4φ: C4×S3/C6C22 ⊆ Aut C896C8:4(C4xS3)192,428
C85(C4×S3) = C8⋊S3⋊C4φ: C4×S3/C6C22 ⊆ Aut C896C8:5(C4xS3)192,440
C86(C4×S3) = C24⋊C2⋊C4φ: C4×S3/C6C22 ⊆ Aut C896C8:6(C4xS3)192,448
C87(C4×S3) = Dic35D8φ: C4×S3/Dic3C2 ⊆ Aut C896C8:7(C4xS3)192,431
C88(C4×S3) = Dic38SD16φ: C4×S3/Dic3C2 ⊆ Aut C896C8:8(C4xS3)192,411
C89(C4×S3) = Dic35M4(2)φ: C4×S3/Dic3C2 ⊆ Aut C896C8:9(C4xS3)192,266
C810(C4×S3) = C4×D24φ: C4×S3/C12C2 ⊆ Aut C896C8:10(C4xS3)192,251
C811(C4×S3) = C4×C24⋊C2φ: C4×S3/C12C2 ⊆ Aut C896C8:11(C4xS3)192,250
C812(C4×S3) = C4×C8⋊S3φ: C4×S3/C12C2 ⊆ Aut C896C8:12(C4xS3)192,246
C813(C4×S3) = S3×C2.D8φ: C4×S3/D6C2 ⊆ Aut C896C8:13(C4xS3)192,438
C814(C4×S3) = S3×C4.Q8φ: C4×S3/D6C2 ⊆ Aut C896C8:14(C4xS3)192,418
C815(C4×S3) = S3×C8⋊C4φ: C4×S3/D6C2 ⊆ Aut C896C8:15(C4xS3)192,263

Non-split extensions G=N.Q with N=C8 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C8.1(C4×S3) = D248C4φ: C4×S3/C6C22 ⊆ Aut C8484C8.1(C4xS3)192,47
C8.2(C4×S3) = D24.C4φ: C4×S3/C6C22 ⊆ Aut C8484+C8.2(C4xS3)192,54
C8.3(C4×S3) = C24.8D4φ: C4×S3/C6C22 ⊆ Aut C8964-C8.3(C4xS3)192,55
C8.4(C4×S3) = M5(2)⋊S3φ: C4×S3/C6C22 ⊆ Aut C8484+C8.4(C4xS3)192,75
C8.5(C4×S3) = C12.4D8φ: C4×S3/C6C22 ⊆ Aut C8964-C8.5(C4xS3)192,76
C8.6(C4×S3) = D242C4φ: C4×S3/C6C22 ⊆ Aut C8484C8.6(C4xS3)192,77
C8.7(C4×S3) = Dic12⋊C4φ: C4×S3/C6C22 ⊆ Aut C8192C8.7(C4xS3)192,275
C8.8(C4×S3) = D244C4φ: C4×S3/C6C22 ⊆ Aut C8484C8.8(C4xS3)192,276
C8.9(C4×S3) = Dic129C4φ: C4×S3/C6C22 ⊆ Aut C8192C8.9(C4xS3)192,412
C8.10(C4×S3) = M4(2).25D6φ: C4×S3/C6C22 ⊆ Aut C8484C8.10(C4xS3)192,452
C8.11(C4×S3) = D2410C4φ: C4×S3/C6C22 ⊆ Aut C8484C8.11(C4xS3)192,453
C8.12(C4×S3) = C6.D16φ: C4×S3/Dic3C2 ⊆ Aut C896C8.12(C4xS3)192,50
C8.13(C4×S3) = C6.Q32φ: C4×S3/Dic3C2 ⊆ Aut C8192C8.13(C4xS3)192,51
C8.14(C4×S3) = Dic12.C4φ: C4×S3/Dic3C2 ⊆ Aut C8964C8.14(C4xS3)192,56
C8.15(C4×S3) = Dic35Q16φ: C4×S3/Dic3C2 ⊆ Aut C8192C8.15(C4xS3)192,432
C8.16(C4×S3) = D247C4φ: C4×S3/Dic3C2 ⊆ Aut C8484C8.16(C4xS3)192,454
C8.17(C4×S3) = C16.12D6φ: C4×S3/Dic3C2 ⊆ Aut C8964C8.17(C4xS3)192,466
C8.18(C4×S3) = C2.Dic24φ: C4×S3/C12C2 ⊆ Aut C8192C8.18(C4xS3)192,62
C8.19(C4×S3) = C2.D48φ: C4×S3/C12C2 ⊆ Aut C896C8.19(C4xS3)192,68
C8.20(C4×S3) = D24.1C4φ: C4×S3/C12C2 ⊆ Aut C8962C8.20(C4xS3)192,69
C8.21(C4×S3) = C4×Dic12φ: C4×S3/C12C2 ⊆ Aut C8192C8.21(C4xS3)192,257
C8.22(C4×S3) = D2411C4φ: C4×S3/C12C2 ⊆ Aut C8482C8.22(C4xS3)192,259
C8.23(C4×S3) = D12.4C8φ: C4×S3/C12C2 ⊆ Aut C8962C8.23(C4xS3)192,460
C8.24(C4×S3) = C6.6D16φ: C4×S3/D6C2 ⊆ Aut C8192C8.24(C4xS3)192,48
C8.25(C4×S3) = C6.SD32φ: C4×S3/D6C2 ⊆ Aut C8192C8.25(C4xS3)192,49
C8.26(C4×S3) = C24.7Q8φ: C4×S3/D6C2 ⊆ Aut C8964C8.26(C4xS3)192,52
C8.27(C4×S3) = C8.27(C4×S3)φ: C4×S3/D6C2 ⊆ Aut C896C8.27(C4xS3)192,439
C8.28(C4×S3) = C8.Dic6φ: C4×S3/D6C2 ⊆ Aut C8484C8.28(C4xS3)192,46
C8.29(C4×S3) = C24.6Q8φ: C4×S3/D6C2 ⊆ Aut C8484C8.29(C4xS3)192,53
C8.30(C4×S3) = (S3×C8)⋊C4φ: C4×S3/D6C2 ⊆ Aut C896C8.30(C4xS3)192,419
C8.31(C4×S3) = S3×C8.C4φ: C4×S3/D6C2 ⊆ Aut C8484C8.31(C4xS3)192,451
C8.32(C4×S3) = C12.15C42φ: C4×S3/D6C2 ⊆ Aut C8484C8.32(C4xS3)192,25
C8.33(C4×S3) = C48⋊C4φ: C4×S3/D6C2 ⊆ Aut C8484C8.33(C4xS3)192,71
C8.34(C4×S3) = D6.4C42φ: C4×S3/D6C2 ⊆ Aut C896C8.34(C4xS3)192,267
C8.35(C4×S3) = S3×M5(2)φ: C4×S3/D6C2 ⊆ Aut C8484C8.35(C4xS3)192,465
C8.36(C4×S3) = S3×C32central extension (φ=1)962C8.36(C4xS3)192,5
C8.37(C4×S3) = C96⋊C2central extension (φ=1)962C8.37(C4xS3)192,6
C8.38(C4×S3) = C4×C3⋊C16central extension (φ=1)192C8.38(C4xS3)192,19
C8.39(C4×S3) = C24.C8central extension (φ=1)192C8.39(C4xS3)192,20
C8.40(C4×S3) = Dic3×C16central extension (φ=1)192C8.40(C4xS3)192,59
C8.41(C4×S3) = C4810C4central extension (φ=1)192C8.41(C4xS3)192,61
C8.42(C4×S3) = D6.C42central extension (φ=1)96C8.42(C4xS3)192,248
C8.43(C4×S3) = S3×C2×C16central extension (φ=1)96C8.43(C4xS3)192,458
C8.44(C4×S3) = C2×D6.C8central extension (φ=1)96C8.44(C4xS3)192,459

׿
×
𝔽