metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.8D4, C12.49D8, C8.18D12, Dic12.4C4, C8.3(C4×S3), (C2×C8).44D6, C24.23(C2×C4), C4.5(D6⋊C4), (C2×C12).96D4, (C2×C6).5SD16, C4.22(D4⋊S3), C8.C4.3S3, C3⋊1(C8.17D4), C12.C8.3C2, C6.8(D4⋊C4), C12.5(C22⋊C4), (C2×C24).101C22, (C2×Dic12).12C2, C2.10(C6.D8), C22.4(Q8⋊2S3), (C3×C8.C4).2C2, (C2×C4).19(C3⋊D4), SmallGroup(192,55)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.8D4
G = < a,b,c | a24=1, b4=a12, c2=a21, bab-1=a7, cac-1=a17, cbc-1=a21b3 >
Character table of C24.8D4
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 24 | 24 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | -i | -1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | -2 | -2 | 2 | 2i | -2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ20 | 2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | -2 | -2 | 2 | -2i | 2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ21 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 4 | 4 | -4 | -2 | 4 | -4 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ24 | 4 | 4 | 4 | -2 | -4 | -4 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ25 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
ρ27 | 4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | √2 | -√6 | -√2 | √6 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | -√6 | √2 | √6 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | √2 | √6 | -√2 | -√6 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | -√2 | √6 | √2 | -√6 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 40 7 34 13 28 19 46)(2 47 8 41 14 35 20 29)(3 30 9 48 15 42 21 36)(4 37 10 31 16 25 22 43)(5 44 11 38 17 32 23 26)(6 27 12 45 18 39 24 33)(49 92 55 86 61 80 67 74)(50 75 56 93 62 87 68 81)(51 82 57 76 63 94 69 88)(52 89 58 83 64 77 70 95)(53 96 59 90 65 84 71 78)(54 79 60 73 66 91 72 85)
(1 83 22 80 19 77 16 74 13 95 10 92 7 89 4 86)(2 76 23 73 20 94 17 91 14 88 11 85 8 82 5 79)(3 93 24 90 21 87 18 84 15 81 12 78 9 75 6 96)(25 52 46 49 43 70 40 67 37 64 34 61 31 58 28 55)(26 69 47 66 44 63 41 60 38 57 35 54 32 51 29 72)(27 62 48 59 45 56 42 53 39 50 36 71 33 68 30 65)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,40,7,34,13,28,19,46)(2,47,8,41,14,35,20,29)(3,30,9,48,15,42,21,36)(4,37,10,31,16,25,22,43)(5,44,11,38,17,32,23,26)(6,27,12,45,18,39,24,33)(49,92,55,86,61,80,67,74)(50,75,56,93,62,87,68,81)(51,82,57,76,63,94,69,88)(52,89,58,83,64,77,70,95)(53,96,59,90,65,84,71,78)(54,79,60,73,66,91,72,85), (1,83,22,80,19,77,16,74,13,95,10,92,7,89,4,86)(2,76,23,73,20,94,17,91,14,88,11,85,8,82,5,79)(3,93,24,90,21,87,18,84,15,81,12,78,9,75,6,96)(25,52,46,49,43,70,40,67,37,64,34,61,31,58,28,55)(26,69,47,66,44,63,41,60,38,57,35,54,32,51,29,72)(27,62,48,59,45,56,42,53,39,50,36,71,33,68,30,65)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,40,7,34,13,28,19,46)(2,47,8,41,14,35,20,29)(3,30,9,48,15,42,21,36)(4,37,10,31,16,25,22,43)(5,44,11,38,17,32,23,26)(6,27,12,45,18,39,24,33)(49,92,55,86,61,80,67,74)(50,75,56,93,62,87,68,81)(51,82,57,76,63,94,69,88)(52,89,58,83,64,77,70,95)(53,96,59,90,65,84,71,78)(54,79,60,73,66,91,72,85), (1,83,22,80,19,77,16,74,13,95,10,92,7,89,4,86)(2,76,23,73,20,94,17,91,14,88,11,85,8,82,5,79)(3,93,24,90,21,87,18,84,15,81,12,78,9,75,6,96)(25,52,46,49,43,70,40,67,37,64,34,61,31,58,28,55)(26,69,47,66,44,63,41,60,38,57,35,54,32,51,29,72)(27,62,48,59,45,56,42,53,39,50,36,71,33,68,30,65) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,40,7,34,13,28,19,46),(2,47,8,41,14,35,20,29),(3,30,9,48,15,42,21,36),(4,37,10,31,16,25,22,43),(5,44,11,38,17,32,23,26),(6,27,12,45,18,39,24,33),(49,92,55,86,61,80,67,74),(50,75,56,93,62,87,68,81),(51,82,57,76,63,94,69,88),(52,89,58,83,64,77,70,95),(53,96,59,90,65,84,71,78),(54,79,60,73,66,91,72,85)], [(1,83,22,80,19,77,16,74,13,95,10,92,7,89,4,86),(2,76,23,73,20,94,17,91,14,88,11,85,8,82,5,79),(3,93,24,90,21,87,18,84,15,81,12,78,9,75,6,96),(25,52,46,49,43,70,40,67,37,64,34,61,31,58,28,55),(26,69,47,66,44,63,41,60,38,57,35,54,32,51,29,72),(27,62,48,59,45,56,42,53,39,50,36,71,33,68,30,65)]])
Matrix representation of C24.8D4 ►in GL6(𝔽97)
1 | 1 | 0 | 0 | 0 | 0 |
96 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 83 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 14 |
0 | 0 | 0 | 0 | 90 | 14 |
75 | 0 | 0 | 0 | 0 | 0 |
0 | 75 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 96 | 2 | 0 | 0 |
0 | 0 | 96 | 1 | 0 | 0 |
88 | 81 | 0 | 0 | 0 | 0 |
90 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 54 | 77 |
0 | 0 | 0 | 0 | 44 | 43 |
0 | 0 | 34 | 20 | 0 | 0 |
0 | 0 | 44 | 63 | 0 | 0 |
G:=sub<GL(6,GF(97))| [1,96,0,0,0,0,1,0,0,0,0,0,0,0,14,7,0,0,0,0,83,0,0,0,0,0,0,0,0,90,0,0,0,0,14,14],[75,0,0,0,0,0,0,75,0,0,0,0,0,0,0,0,96,96,0,0,0,0,2,1,0,0,1,0,0,0,0,0,0,1,0,0],[88,90,0,0,0,0,81,9,0,0,0,0,0,0,0,0,34,44,0,0,0,0,20,63,0,0,54,44,0,0,0,0,77,43,0,0] >;
C24.8D4 in GAP, Magma, Sage, TeX
C_{24}._8D_4
% in TeX
G:=Group("C24.8D4");
// GroupNames label
G:=SmallGroup(192,55);
// by ID
G=gap.SmallGroup(192,55);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,141,36,758,184,675,794,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=1,b^4=a^12,c^2=a^21,b*a*b^-1=a^7,c*a*c^-1=a^17,c*b*c^-1=a^21*b^3>;
// generators/relations
Export
Subgroup lattice of C24.8D4 in TeX
Character table of C24.8D4 in TeX