metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D24⋊8C4, C8.22D12, C24.38D4, Dic12⋊8C4, C12.3SD16, C8.1(C4×S3), C4.Q8⋊1S3, (C2×C6).30D8, (C2×C8).41D6, C3⋊1(D8⋊2C4), C24.21(C2×C4), C4.1(D6⋊C4), C4○D24.6C2, (C2×C12).88D4, C12.C8⋊4C2, C6.4(D4⋊C4), C12.1(C22⋊C4), (C2×C24).47C22, C22.8(D4⋊S3), C4.7(Q8⋊2S3), C2.6(C6.D8), (C3×C4.Q8)⋊1C2, (C2×C4).16(C3⋊D4), SmallGroup(192,47)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24⋊8C4
G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a19, cbc-1=a15b >
Subgroups: 208 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, C12, D6, C2×C6, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C4.Q8, M5(2), C4○D8, C3⋊C16, C24⋊C2, D24, Dic12, C3×C4⋊C4, C2×C24, C4○D12, D8⋊2C4, C12.C8, C3×C4.Q8, C4○D24, D24⋊8C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C4×S3, D12, C3⋊D4, D4⋊C4, D6⋊C4, D4⋊S3, Q8⋊2S3, D8⋊2C4, C6.D8, D24⋊8C4
Character table of D24⋊8C4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 8A | 8B | 8C | 12A | 12B | 12C | 12D | 12E | 12F | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 24 | 2 | 2 | 2 | 8 | 8 | 24 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 1 | -1 | 1 | 2 | 2 | -2 | -1 | 1 | √3 | -√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 1 | -1 | 1 | 2 | 2 | -2 | -1 | 1 | -√3 | √3 | -√3 | √3 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 2i | -2i | 0 | 1 | -1 | 1 | -2 | -2 | 2 | -1 | 1 | -i | -i | i | i | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C4×S3 |
ρ18 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | -2i | 2i | 0 | 1 | -1 | 1 | -2 | -2 | 2 | -1 | 1 | i | i | -i | -i | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C4×S3 |
ρ19 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | 4 | 0 | -2 | -4 | -4 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ24 | 4 | 4 | -4 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ25 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 2√-2 | complex lifted from D8⋊2C4 |
ρ26 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | -2√-2 | complex lifted from D8⋊2C4 |
ρ27 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | √-2 | √6 | -√-2 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | √-2 | -√6 | -√-2 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | -√-2 | √6 | √-2 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | -√-2 | -√6 | √-2 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)
(2 20)(3 15)(4 10)(6 24)(7 19)(8 14)(11 23)(12 18)(16 22)(25 28 37 40)(26 47 38 35)(27 42 39 30)(29 32 41 44)(31 46 43 34)(33 36 45 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43)], [(2,20),(3,15),(4,10),(6,24),(7,19),(8,14),(11,23),(12,18),(16,22),(25,28,37,40),(26,47,38,35),(27,42,39,30),(29,32,41,44),(31,46,43,34),(33,36,45,48)]])
Matrix representation of D24⋊8C4 ►in GL6(𝔽97)
0 | 1 | 0 | 0 | 0 | 0 |
96 | 96 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 57 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 57 | 40 |
0 | 0 | 0 | 0 | 57 | 57 |
27 | 42 | 0 | 0 | 0 | 0 |
15 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 57 | 40 |
0 | 0 | 0 | 0 | 57 | 57 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 57 | 40 | 0 | 0 |
75 | 0 | 0 | 0 | 0 | 0 |
0 | 75 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 57 |
0 | 0 | 0 | 0 | 57 | 57 |
G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,0,0,0,0,57,57,0,0,0,0,40,57],[27,15,0,0,0,0,42,70,0,0,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,57,57,0,0,0,0,40,57,0,0],[75,0,0,0,0,0,0,75,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,40,57,0,0,0,0,57,57] >;
D24⋊8C4 in GAP, Magma, Sage, TeX
D_{24}\rtimes_8C_4
% in TeX
G:=Group("D24:8C4");
// GroupNames label
G:=SmallGroup(192,47);
// by ID
G=gap.SmallGroup(192,47);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,675,794,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations
Export