Copied to
clipboard

G = Dic12.C4order 192 = 26·3

3rd non-split extension by Dic12 of C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24.3C4, C8.23D12, C24.39D4, C12.56D8, Dic12.3C4, C8.14(C4xS3), C8.C4:2S3, C24.12(C2xC4), C4.6(D6:C4), C4oD24.3C2, (C2xC12).97D4, (C2xC8).249D6, (C2xC6).6SD16, C4.29(D4:S3), C3:1(D8.C4), C6.9(D4:C4), C12.6(C22:C4), (C2xC24).37C22, C2.11(C6.D8), C22.1(Q8:2S3), (C2xC3:C16):1C2, (C3xC8.C4):1C2, (C2xC4).118(C3:D4), SmallGroup(192,56)

Series: Derived Chief Lower central Upper central

C1C24 — Dic12.C4
C1C3C6C12C2xC12C2xC24C4oD24 — Dic12.C4
C3C6C12C24 — Dic12.C4
C1C4C2xC4C2xC8C8.C4

Generators and relations for Dic12.C4
 G = < a,b,c | a24=1, b2=c4=a12, bab-1=a-1, cac-1=a7, cbc-1=a9b >

Subgroups: 192 in 56 conjugacy classes, 25 normal (all characteristic)
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, D6:C4, D4:S3, Q8:2S3, D8.C4, C6.D8, Dic12.C4
2C2
24C2
12C22
12C4
2C6
8S3
4C8
6Q8
6D4
12D4
12C2xC4
4Dic3
4D6
2M4(2)
3Q16
3D8
6C16
6SD16
6C4oD4
2Dic6
2D12
4C4xS3
4C24
4C3:D4
3C2xC16
3C4oD8
2C3xM4(2)
2C4oD12
2C24:C2
2C3:C16
3D8.C4

Smallest permutation representation of Dic12.C4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 30 13 42)(2 29 14 41)(3 28 15 40)(4 27 16 39)(5 26 17 38)(6 25 18 37)(7 48 19 36)(8 47 20 35)(9 46 21 34)(10 45 22 33)(11 44 23 32)(12 43 24 31)(49 93 61 81)(50 92 62 80)(51 91 63 79)(52 90 64 78)(53 89 65 77)(54 88 66 76)(55 87 67 75)(56 86 68 74)(57 85 69 73)(58 84 70 96)(59 83 71 95)(60 82 72 94)
(1 76 30 69 13 88 42 57)(2 83 31 52 14 95 43 64)(3 90 32 59 15 78 44 71)(4 73 33 66 16 85 45 54)(5 80 34 49 17 92 46 61)(6 87 35 56 18 75 47 68)(7 94 36 63 19 82 48 51)(8 77 37 70 20 89 25 58)(9 84 38 53 21 96 26 65)(10 91 39 60 22 79 27 72)(11 74 40 67 23 86 28 55)(12 81 41 50 24 93 29 62)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,30,13,42)(2,29,14,41)(3,28,15,40)(4,27,16,39)(5,26,17,38)(6,25,18,37)(7,48,19,36)(8,47,20,35)(9,46,21,34)(10,45,22,33)(11,44,23,32)(12,43,24,31)(49,93,61,81)(50,92,62,80)(51,91,63,79)(52,90,64,78)(53,89,65,77)(54,88,66,76)(55,87,67,75)(56,86,68,74)(57,85,69,73)(58,84,70,96)(59,83,71,95)(60,82,72,94), (1,76,30,69,13,88,42,57)(2,83,31,52,14,95,43,64)(3,90,32,59,15,78,44,71)(4,73,33,66,16,85,45,54)(5,80,34,49,17,92,46,61)(6,87,35,56,18,75,47,68)(7,94,36,63,19,82,48,51)(8,77,37,70,20,89,25,58)(9,84,38,53,21,96,26,65)(10,91,39,60,22,79,27,72)(11,74,40,67,23,86,28,55)(12,81,41,50,24,93,29,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,30,13,42)(2,29,14,41)(3,28,15,40)(4,27,16,39)(5,26,17,38)(6,25,18,37)(7,48,19,36)(8,47,20,35)(9,46,21,34)(10,45,22,33)(11,44,23,32)(12,43,24,31)(49,93,61,81)(50,92,62,80)(51,91,63,79)(52,90,64,78)(53,89,65,77)(54,88,66,76)(55,87,67,75)(56,86,68,74)(57,85,69,73)(58,84,70,96)(59,83,71,95)(60,82,72,94), (1,76,30,69,13,88,42,57)(2,83,31,52,14,95,43,64)(3,90,32,59,15,78,44,71)(4,73,33,66,16,85,45,54)(5,80,34,49,17,92,46,61)(6,87,35,56,18,75,47,68)(7,94,36,63,19,82,48,51)(8,77,37,70,20,89,25,58)(9,84,38,53,21,96,26,65)(10,91,39,60,22,79,27,72)(11,74,40,67,23,86,28,55)(12,81,41,50,24,93,29,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,30,13,42),(2,29,14,41),(3,28,15,40),(4,27,16,39),(5,26,17,38),(6,25,18,37),(7,48,19,36),(8,47,20,35),(9,46,21,34),(10,45,22,33),(11,44,23,32),(12,43,24,31),(49,93,61,81),(50,92,62,80),(51,91,63,79),(52,90,64,78),(53,89,65,77),(54,88,66,76),(55,87,67,75),(56,86,68,74),(57,85,69,73),(58,84,70,96),(59,83,71,95),(60,82,72,94)], [(1,76,30,69,13,88,42,57),(2,83,31,52,14,95,43,64),(3,90,32,59,15,78,44,71),(4,73,33,66,16,85,45,54),(5,80,34,49,17,92,46,61),(6,87,35,56,18,75,47,68),(7,94,36,63,19,82,48,51),(8,77,37,70,20,89,25,58),(9,84,38,53,21,96,26,65),(10,91,39,60,22,79,27,72),(11,74,40,67,23,86,28,55),(12,81,41,50,24,93,29,62)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D6A6B8A8B8C8D8E8F12A12B12C16A···16H24A24B24C24D24E24F24G24H
order1222344446688888812121216···162424242424242424
size11224211224242222882246···644448888

36 irreducible representations

dim1111112222222222444
type++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D8SD16C4xS3D12C3:D4D8.C4D4:S3Q8:2S3Dic12.C4
kernelDic12.C4C2xC3:C16C3xC8.C4C4oD24D24Dic12C8.C4C24C2xC12C2xC8C12C2xC6C8C8C2xC4C3C4C22C1
# reps1111221111222228114

Matrix representation of Dic12.C4 in GL4(F97) generated by

0100
969600
00014
009014
,
96000
1100
00750
007522
,
22000
02200
006178
00336
G:=sub<GL(4,GF(97))| [0,96,0,0,1,96,0,0,0,0,0,90,0,0,14,14],[96,1,0,0,0,1,0,0,0,0,75,75,0,0,0,22],[22,0,0,0,0,22,0,0,0,0,61,3,0,0,78,36] >;

Dic12.C4 in GAP, Magma, Sage, TeX

{\rm Dic}_{12}.C_4
% in TeX

G:=Group("Dic12.C4");
// GroupNames label

G:=SmallGroup(192,56);
// by ID

G=gap.SmallGroup(192,56);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,184,675,346,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^2=c^4=a^12,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations

Export

Subgroup lattice of Dic12.C4 in TeX

׿
x
:
Z
F
o
wr
Q
<