Copied to
clipboard

G = C122D8order 192 = 26·3

2nd semidirect product of C12 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C122D8, D129D4, C42.73D6, C42(D4⋊S3), C41D42S3, C34(C4⋊D8), C4.53(S3×D4), C6.57(C2×D8), (C4×D12)⋊22C2, (C2×D4).55D6, C12⋊C831C2, C12.30(C2×D4), (C2×C12).147D4, C12.76(C4○D4), C4.3(D42S3), D4⋊Dic322C2, C6.94(C8⋊C22), (C6×D4).71C22, C2.12(D63D4), C6.103(C4⋊D4), (C4×C12).120C22, (C2×C12).390C23, C2.15(D126C22), (C2×D12).246C22, C4⋊Dic3.344C22, (C2×D4⋊S3)⋊13C2, (C3×C41D4)⋊1C2, C2.12(C2×D4⋊S3), (C2×C6).521(C2×D4), (C2×C3⋊C8).130C22, (C2×C4).185(C3⋊D4), (C2×C4).488(C22×S3), C22.194(C2×C3⋊D4), SmallGroup(192,631)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C122D8
C1C3C6C12C2×C12C2×D12C4×D12 — C122D8
C3C6C2×C12 — C122D8
C1C22C42C41D4

Generators and relations for C122D8
 G = < a,b,c | a12=b8=c2=1, bab-1=a-1, cac=a5, cbc=b-1 >

Subgroups: 448 in 140 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C4×S3, D12, D12, C2×Dic3, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, D4⋊S3, C4×C12, S3×C2×C4, C2×D12, C6×D4, C6×D4, C4⋊D8, C12⋊C8, D4⋊Dic3, C4×D12, C2×D4⋊S3, C3×C41D4, C122D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C2×D8, C8⋊C22, D4⋊S3, S3×D4, D42S3, C2×C3⋊D4, C4⋊D8, C2×D4⋊S3, D126C22, D63D4, C122D8

Smallest permutation representation of C122D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 36 48 50 85 21 78 64)(2 35 37 49 86 20 79 63)(3 34 38 60 87 19 80 62)(4 33 39 59 88 18 81 61)(5 32 40 58 89 17 82 72)(6 31 41 57 90 16 83 71)(7 30 42 56 91 15 84 70)(8 29 43 55 92 14 73 69)(9 28 44 54 93 13 74 68)(10 27 45 53 94 24 75 67)(11 26 46 52 95 23 76 66)(12 25 47 51 96 22 77 65)
(2 6)(3 11)(5 9)(8 12)(13 58)(14 51)(15 56)(16 49)(17 54)(18 59)(19 52)(20 57)(21 50)(22 55)(23 60)(24 53)(25 69)(26 62)(27 67)(28 72)(29 65)(30 70)(31 63)(32 68)(33 61)(34 66)(35 71)(36 64)(37 83)(38 76)(39 81)(40 74)(41 79)(42 84)(43 77)(44 82)(45 75)(46 80)(47 73)(48 78)(86 90)(87 95)(89 93)(92 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,48,50,85,21,78,64)(2,35,37,49,86,20,79,63)(3,34,38,60,87,19,80,62)(4,33,39,59,88,18,81,61)(5,32,40,58,89,17,82,72)(6,31,41,57,90,16,83,71)(7,30,42,56,91,15,84,70)(8,29,43,55,92,14,73,69)(9,28,44,54,93,13,74,68)(10,27,45,53,94,24,75,67)(11,26,46,52,95,23,76,66)(12,25,47,51,96,22,77,65), (2,6)(3,11)(5,9)(8,12)(13,58)(14,51)(15,56)(16,49)(17,54)(18,59)(19,52)(20,57)(21,50)(22,55)(23,60)(24,53)(25,69)(26,62)(27,67)(28,72)(29,65)(30,70)(31,63)(32,68)(33,61)(34,66)(35,71)(36,64)(37,83)(38,76)(39,81)(40,74)(41,79)(42,84)(43,77)(44,82)(45,75)(46,80)(47,73)(48,78)(86,90)(87,95)(89,93)(92,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,48,50,85,21,78,64)(2,35,37,49,86,20,79,63)(3,34,38,60,87,19,80,62)(4,33,39,59,88,18,81,61)(5,32,40,58,89,17,82,72)(6,31,41,57,90,16,83,71)(7,30,42,56,91,15,84,70)(8,29,43,55,92,14,73,69)(9,28,44,54,93,13,74,68)(10,27,45,53,94,24,75,67)(11,26,46,52,95,23,76,66)(12,25,47,51,96,22,77,65), (2,6)(3,11)(5,9)(8,12)(13,58)(14,51)(15,56)(16,49)(17,54)(18,59)(19,52)(20,57)(21,50)(22,55)(23,60)(24,53)(25,69)(26,62)(27,67)(28,72)(29,65)(30,70)(31,63)(32,68)(33,61)(34,66)(35,71)(36,64)(37,83)(38,76)(39,81)(40,74)(41,79)(42,84)(43,77)(44,82)(45,75)(46,80)(47,73)(48,78)(86,90)(87,95)(89,93)(92,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,36,48,50,85,21,78,64),(2,35,37,49,86,20,79,63),(3,34,38,60,87,19,80,62),(4,33,39,59,88,18,81,61),(5,32,40,58,89,17,82,72),(6,31,41,57,90,16,83,71),(7,30,42,56,91,15,84,70),(8,29,43,55,92,14,73,69),(9,28,44,54,93,13,74,68),(10,27,45,53,94,24,75,67),(11,26,46,52,95,23,76,66),(12,25,47,51,96,22,77,65)], [(2,6),(3,11),(5,9),(8,12),(13,58),(14,51),(15,56),(16,49),(17,54),(18,59),(19,52),(20,57),(21,50),(22,55),(23,60),(24,53),(25,69),(26,62),(27,67),(28,72),(29,65),(30,70),(31,63),(32,68),(33,61),(34,66),(35,71),(36,64),(37,83),(38,76),(39,81),(40,74),(41,79),(42,84),(43,77),(44,82),(45,75),(46,80),(47,73),(48,78),(86,90),(87,95),(89,93),(92,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G8A8B8C8D12A···12F
order12222222344444446666666888812···12
size111188121222222412122228888121212124···4

33 irreducible representations

dim1111112222222244444
type+++++++++++++++-
imageC1C2C2C2C2C2S3D4D4D6D6D8C4○D4C3⋊D4C8⋊C22D4⋊S3S3×D4D42S3D126C22
kernelC122D8C12⋊C8D4⋊Dic3C4×D12C2×D4⋊S3C3×C41D4C41D4D12C2×C12C42C2×D4C12C12C2×C4C6C4C4C4C2
# reps1121211221242412112

Matrix representation of C122D8 in GL6(𝔽73)

7200000
0720000
000100
00727200
0000270
0000046
,
41410000
1600000
0072000
001100
0000072
000010
,
100000
72720000
001000
00727200
000010
0000072

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,27,0,0,0,0,0,0,46],[41,16,0,0,0,0,41,0,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C122D8 in GAP, Magma, Sage, TeX

C_{12}\rtimes_2D_8
% in TeX

G:=Group("C12:2D8");
// GroupNames label

G:=SmallGroup(192,631);
// by ID

G=gap.SmallGroup(192,631);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^-1,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽