Copied to
clipboard

G = C2×C4.S4order 192 = 26·3

Direct product of C2 and C4.S4

direct product, non-abelian, soluble

Aliases: C2×C4.S4, CSU2(𝔽3)⋊2C22, SL2(𝔽3).3C23, C4.23(C2×S4), (C2×C4).17S4, C4○D4.15D6, (C2×Q8).21D6, C22.28(C2×S4), C2.13(C22×S4), Q8.3(C22×S3), C4.A4.10C22, (C2×CSU2(𝔽3))⋊5C2, (C2×SL2(𝔽3)).21C22, (C2×C4.A4).3C2, (C2×C4○D4).6S3, SmallGroup(192,1479)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C2×C4.S4
C1C2Q8SL2(𝔽3)CSU2(𝔽3)C2×CSU2(𝔽3) — C2×C4.S4
SL2(𝔽3) — C2×C4.S4
C1C22C2×C4

Generators and relations for C2×C4.S4
 G = < a,b,c,d,e,f | a2=b4=e3=1, c2=d2=f2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=b-1, dcd-1=b2c, ece-1=b2cd, fcf-1=cd, ede-1=c, fdf-1=b2d, fef-1=e-1 >

Subgroups: 459 in 141 conjugacy classes, 29 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, C2×C6, C2×C8, M4(2), SD16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, SL2(𝔽3), Dic6, C2×Dic3, C2×C12, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, CSU2(𝔽3), C2×SL2(𝔽3), C4.A4, C2×Dic6, C2×C8.C22, C2×CSU2(𝔽3), C4.S4, C2×C4.A4, C2×C4.S4
Quotients: C1, C2, C22, S3, C23, D6, S4, C22×S3, C2×S4, C4.S4, C22×S4, C2×C4.S4

Character table of C2×C4.S4

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D
 size 1111668226612121212888121212128888
ρ111111111111111111111111111    trivial
ρ211-1-1-1111-11-11-1-11-1-111-1-11-11-11    linear of order 2
ρ311-1-11-11-111-111-1-1-1-1111-1-11-11-1    linear of order 2
ρ41111-1-11-1-1111-11-11111-11-1-1-1-1-1    linear of order 2
ρ511-1-1-1111-11-1-111-1-1-11-111-1-11-11    linear of order 2
ρ611111111111-1-1-1-1111-1-1-1-11111    linear of order 2
ρ71111-1-11-1-111-11-11111-11-11-1-1-1-1    linear of order 2
ρ811-1-11-11-111-1-1-111-1-11-1-1111-11-1    linear of order 2
ρ9222222-122220000-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1022-2-22-2-1-222-2000011-10000-11-11    orthogonal lifted from D6
ρ1122-2-2-22-12-22-2000011-100001-11-1    orthogonal lifted from D6
ρ122222-2-2-1-2-2220000-1-1-100001111    orthogonal lifted from D6
ρ133333110-3-3-1-1-11-110001-11-10000    orthogonal lifted from C2×S4
ρ1433-3-3-110-33-11-1-11100011-1-10000    orthogonal lifted from C2×S4
ρ153333-1-1033-1-11111000-1-1-1-10000    orthogonal lifted from S4
ρ1633-3-31-103-3-111-1-11000-111-10000    orthogonal lifted from C2×S4
ρ1733-3-3-110-33-1111-1-1000-1-1110000    orthogonal lifted from C2×S4
ρ183333110-3-3-1-11-11-1000-11-110000    orthogonal lifted from C2×S4
ρ1933-3-31-103-3-11-111-10001-1-110000    orthogonal lifted from C2×S4
ρ203333-1-1033-1-1-1-1-1-100011110000    orthogonal lifted from S4
ρ214-44-400-2000000002-2200000000    symplectic lifted from C4.S4, Schur index 2
ρ224-4-4400-200000000-22200000000    symplectic lifted from C4.S4, Schur index 2
ρ234-4-44001000000001-1-10000-333-3    symplectic lifted from C4.S4, Schur index 2
ρ244-4-44001000000001-1-100003-3-33    symplectic lifted from C4.S4, Schur index 2
ρ254-44-400100000000-11-1000033-3-3    symplectic lifted from C4.S4, Schur index 2
ρ264-44-400100000000-11-10000-3-333    symplectic lifted from C4.S4, Schur index 2

Smallest permutation representation of C2×C4.S4
On 64 points
Generators in S64
(1 25)(2 26)(3 27)(4 28)(5 23)(6 24)(7 21)(8 22)(9 52)(10 49)(11 50)(12 51)(13 31)(14 32)(15 29)(16 30)(17 34)(18 35)(19 36)(20 33)(37 55)(38 56)(39 53)(40 54)(41 59)(42 60)(43 57)(44 58)(45 63)(46 64)(47 61)(48 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 13 3 15)(2 14 4 16)(5 20 7 18)(6 17 8 19)(9 63 11 61)(10 64 12 62)(21 35 23 33)(22 36 24 34)(25 31 27 29)(26 32 28 30)(37 41 39 43)(38 42 40 44)(45 50 47 52)(46 51 48 49)(53 57 55 59)(54 58 56 60)
(1 17 3 19)(2 18 4 20)(5 14 7 16)(6 15 8 13)(9 56 11 54)(10 53 12 55)(21 30 23 32)(22 31 24 29)(25 34 27 36)(26 35 28 33)(37 49 39 51)(38 50 40 52)(41 48 43 46)(42 45 44 47)(57 64 59 62)(58 61 60 63)
(5 14 18)(6 15 19)(7 16 20)(8 13 17)(9 63 58)(10 64 59)(11 61 60)(12 62 57)(21 30 33)(22 31 34)(23 32 35)(24 29 36)(41 49 46)(42 50 47)(43 51 48)(44 52 45)
(1 54 3 56)(2 53 4 55)(5 59 7 57)(6 58 8 60)(9 17 11 19)(10 20 12 18)(13 61 15 63)(14 64 16 62)(21 43 23 41)(22 42 24 44)(25 40 27 38)(26 39 28 37)(29 45 31 47)(30 48 32 46)(33 51 35 49)(34 50 36 52)

G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,23)(6,24)(7,21)(8,22)(9,52)(10,49)(11,50)(12,51)(13,31)(14,32)(15,29)(16,30)(17,34)(18,35)(19,36)(20,33)(37,55)(38,56)(39,53)(40,54)(41,59)(42,60)(43,57)(44,58)(45,63)(46,64)(47,61)(48,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,3,15)(2,14,4,16)(5,20,7,18)(6,17,8,19)(9,63,11,61)(10,64,12,62)(21,35,23,33)(22,36,24,34)(25,31,27,29)(26,32,28,30)(37,41,39,43)(38,42,40,44)(45,50,47,52)(46,51,48,49)(53,57,55,59)(54,58,56,60), (1,17,3,19)(2,18,4,20)(5,14,7,16)(6,15,8,13)(9,56,11,54)(10,53,12,55)(21,30,23,32)(22,31,24,29)(25,34,27,36)(26,35,28,33)(37,49,39,51)(38,50,40,52)(41,48,43,46)(42,45,44,47)(57,64,59,62)(58,61,60,63), (5,14,18)(6,15,19)(7,16,20)(8,13,17)(9,63,58)(10,64,59)(11,61,60)(12,62,57)(21,30,33)(22,31,34)(23,32,35)(24,29,36)(41,49,46)(42,50,47)(43,51,48)(44,52,45), (1,54,3,56)(2,53,4,55)(5,59,7,57)(6,58,8,60)(9,17,11,19)(10,20,12,18)(13,61,15,63)(14,64,16,62)(21,43,23,41)(22,42,24,44)(25,40,27,38)(26,39,28,37)(29,45,31,47)(30,48,32,46)(33,51,35,49)(34,50,36,52)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,23)(6,24)(7,21)(8,22)(9,52)(10,49)(11,50)(12,51)(13,31)(14,32)(15,29)(16,30)(17,34)(18,35)(19,36)(20,33)(37,55)(38,56)(39,53)(40,54)(41,59)(42,60)(43,57)(44,58)(45,63)(46,64)(47,61)(48,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,3,15)(2,14,4,16)(5,20,7,18)(6,17,8,19)(9,63,11,61)(10,64,12,62)(21,35,23,33)(22,36,24,34)(25,31,27,29)(26,32,28,30)(37,41,39,43)(38,42,40,44)(45,50,47,52)(46,51,48,49)(53,57,55,59)(54,58,56,60), (1,17,3,19)(2,18,4,20)(5,14,7,16)(6,15,8,13)(9,56,11,54)(10,53,12,55)(21,30,23,32)(22,31,24,29)(25,34,27,36)(26,35,28,33)(37,49,39,51)(38,50,40,52)(41,48,43,46)(42,45,44,47)(57,64,59,62)(58,61,60,63), (5,14,18)(6,15,19)(7,16,20)(8,13,17)(9,63,58)(10,64,59)(11,61,60)(12,62,57)(21,30,33)(22,31,34)(23,32,35)(24,29,36)(41,49,46)(42,50,47)(43,51,48)(44,52,45), (1,54,3,56)(2,53,4,55)(5,59,7,57)(6,58,8,60)(9,17,11,19)(10,20,12,18)(13,61,15,63)(14,64,16,62)(21,43,23,41)(22,42,24,44)(25,40,27,38)(26,39,28,37)(29,45,31,47)(30,48,32,46)(33,51,35,49)(34,50,36,52) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,23),(6,24),(7,21),(8,22),(9,52),(10,49),(11,50),(12,51),(13,31),(14,32),(15,29),(16,30),(17,34),(18,35),(19,36),(20,33),(37,55),(38,56),(39,53),(40,54),(41,59),(42,60),(43,57),(44,58),(45,63),(46,64),(47,61),(48,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,13,3,15),(2,14,4,16),(5,20,7,18),(6,17,8,19),(9,63,11,61),(10,64,12,62),(21,35,23,33),(22,36,24,34),(25,31,27,29),(26,32,28,30),(37,41,39,43),(38,42,40,44),(45,50,47,52),(46,51,48,49),(53,57,55,59),(54,58,56,60)], [(1,17,3,19),(2,18,4,20),(5,14,7,16),(6,15,8,13),(9,56,11,54),(10,53,12,55),(21,30,23,32),(22,31,24,29),(25,34,27,36),(26,35,28,33),(37,49,39,51),(38,50,40,52),(41,48,43,46),(42,45,44,47),(57,64,59,62),(58,61,60,63)], [(5,14,18),(6,15,19),(7,16,20),(8,13,17),(9,63,58),(10,64,59),(11,61,60),(12,62,57),(21,30,33),(22,31,34),(23,32,35),(24,29,36),(41,49,46),(42,50,47),(43,51,48),(44,52,45)], [(1,54,3,56),(2,53,4,55),(5,59,7,57),(6,58,8,60),(9,17,11,19),(10,20,12,18),(13,61,15,63),(14,64,16,62),(21,43,23,41),(22,42,24,44),(25,40,27,38),(26,39,28,37),(29,45,31,47),(30,48,32,46),(33,51,35,49),(34,50,36,52)]])

Matrix representation of C2×C4.S4 in GL7(𝔽73)

72000000
07200000
00720000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
00007667
00066077
00076607
0006666660
,
72000000
72010000
72100000
0000100
00072000
00000072
0000010
,
01720000
10720000
00720000
0000001
00000720
0000100
00072000
,
0100000
0010000
1000000
0001000
00000720
00000072
0000100
,
07200000
72000000
00720000
00046000
00000460
00004600
00000027

G:=sub<GL(7,GF(73))| [72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,66,7,66,0,0,0,7,0,66,66,0,0,0,66,7,0,66,0,0,0,7,7,7,0],[72,72,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,72,0],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,72,72,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0],[0,72,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,46,0,0,0,0,0,46,0,0,0,0,0,0,0,0,27] >;

C2×C4.S4 in GAP, Magma, Sage, TeX

C_2\times C_4.S_4
% in TeX

G:=Group("C2xC4.S4");
// GroupNames label

G:=SmallGroup(192,1479);
// by ID

G=gap.SmallGroup(192,1479);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,672,2102,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=e^3=1,c^2=d^2=f^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b^-1,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=b^2*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Character table of C2×C4.S4 in TeX

׿
×
𝔽