extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C6) = C3×S3×Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.1(S3xC6) | 216,119 |
C6.2(S3×C6) = C3×C6.D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.2(S3xC6) | 216,120 |
C6.3(S3×C6) = C3×D6⋊S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.3(S3xC6) | 216,121 |
C6.4(S3×C6) = C3×C3⋊D12 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.4(S3xC6) | 216,122 |
C6.5(S3×C6) = C3×C32⋊2Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.5(S3xC6) | 216,123 |
C6.6(S3×C6) = C3×Dic18 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | 2 | C6.6(S3xC6) | 216,43 |
C6.7(S3×C6) = C12×D9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | 2 | C6.7(S3xC6) | 216,45 |
C6.8(S3×C6) = C3×D36 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | 2 | C6.8(S3xC6) | 216,46 |
C6.9(S3×C6) = He3⋊3Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | 6- | C6.9(S3xC6) | 216,49 |
C6.10(S3×C6) = C4×C32⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6 | C6.10(S3xC6) | 216,50 |
C6.11(S3×C6) = He3⋊4D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6+ | C6.11(S3xC6) | 216,51 |
C6.12(S3×C6) = C36.C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | 6- | C6.12(S3xC6) | 216,52 |
C6.13(S3×C6) = C4×C9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6 | C6.13(S3xC6) | 216,53 |
C6.14(S3×C6) = D36⋊C3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6+ | C6.14(S3xC6) | 216,54 |
C6.15(S3×C6) = C6×Dic9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.15(S3xC6) | 216,55 |
C6.16(S3×C6) = C3×C9⋊D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 2 | C6.16(S3xC6) | 216,57 |
C6.17(S3×C6) = C2×C32⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.17(S3xC6) | 216,59 |
C6.18(S3×C6) = He3⋊6D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6 | C6.18(S3xC6) | 216,60 |
C6.19(S3×C6) = C2×C9⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.19(S3xC6) | 216,61 |
C6.20(S3×C6) = Dic9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | 6 | C6.20(S3xC6) | 216,62 |
C6.21(S3×C6) = C2×C6×D9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.21(S3xC6) | 216,108 |
C6.22(S3×C6) = C22×C32⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | | C6.22(S3xC6) | 216,110 |
C6.23(S3×C6) = C22×C9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | | C6.23(S3xC6) | 216,111 |
C6.24(S3×C6) = C3×C32⋊4Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.24(S3xC6) | 216,140 |
C6.25(S3×C6) = C12×C3⋊S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.25(S3xC6) | 216,141 |
C6.26(S3×C6) = C3×C12⋊S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.26(S3xC6) | 216,142 |
C6.27(S3×C6) = C6×C3⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 72 | | C6.27(S3xC6) | 216,143 |
C6.28(S3×C6) = C3×C32⋊7D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C6 | 36 | | C6.28(S3xC6) | 216,144 |
C6.29(S3×C6) = C9×Dic6 | central extension (φ=1) | 72 | 2 | C6.29(S3xC6) | 216,44 |
C6.30(S3×C6) = S3×C36 | central extension (φ=1) | 72 | 2 | C6.30(S3xC6) | 216,47 |
C6.31(S3×C6) = C9×D12 | central extension (φ=1) | 72 | 2 | C6.31(S3xC6) | 216,48 |
C6.32(S3×C6) = Dic3×C18 | central extension (φ=1) | 72 | | C6.32(S3xC6) | 216,56 |
C6.33(S3×C6) = C9×C3⋊D4 | central extension (φ=1) | 36 | 2 | C6.33(S3xC6) | 216,58 |
C6.34(S3×C6) = S3×C2×C18 | central extension (φ=1) | 72 | | C6.34(S3xC6) | 216,109 |
C6.35(S3×C6) = C32×Dic6 | central extension (φ=1) | 72 | | C6.35(S3xC6) | 216,135 |
C6.36(S3×C6) = S3×C3×C12 | central extension (φ=1) | 72 | | C6.36(S3xC6) | 216,136 |
C6.37(S3×C6) = C32×D12 | central extension (φ=1) | 72 | | C6.37(S3xC6) | 216,137 |
C6.38(S3×C6) = Dic3×C3×C6 | central extension (φ=1) | 72 | | C6.38(S3xC6) | 216,138 |
C6.39(S3×C6) = C32×C3⋊D4 | central extension (φ=1) | 36 | | C6.39(S3xC6) | 216,139 |