Extensions 1→N→G→Q→1 with N=C6 and Q=D18

Direct product G=NxQ with N=C6 and Q=D18
dρLabelID
C2xC6xD972C2xC6xD9216,108

Semidirect products G=N:Q with N=C6 and Q=D18
extensionφ:Q→Aut NdρLabelID
C6:1D18 = C2xS3xD9φ: D18/D9C2 ⊆ Aut C6364+C6:1D18216,101
C6:2D18 = C22xC9:S3φ: D18/C18C2 ⊆ Aut C6108C6:2D18216,112

Non-split extensions G=N.Q with N=C6 and Q=D18
extensionφ:Q→Aut NdρLabelID
C6.1D18 = C9:Dic6φ: D18/D9C2 ⊆ Aut C6724-C6.1D18216,26
C6.2D18 = Dic3xD9φ: D18/D9C2 ⊆ Aut C6724-C6.2D18216,27
C6.3D18 = C18.D6φ: D18/D9C2 ⊆ Aut C6364+C6.3D18216,28
C6.4D18 = C3:D36φ: D18/D9C2 ⊆ Aut C6364+C6.4D18216,29
C6.5D18 = S3xDic9φ: D18/D9C2 ⊆ Aut C6724-C6.5D18216,30
C6.6D18 = D6:D9φ: D18/D9C2 ⊆ Aut C6724-C6.6D18216,31
C6.7D18 = C9:D12φ: D18/D9C2 ⊆ Aut C6364+C6.7D18216,32
C6.8D18 = Dic54φ: D18/C18C2 ⊆ Aut C62162-C6.8D18216,4
C6.9D18 = C4xD27φ: D18/C18C2 ⊆ Aut C61082C6.9D18216,5
C6.10D18 = D108φ: D18/C18C2 ⊆ Aut C61082+C6.10D18216,6
C6.11D18 = C2xDic27φ: D18/C18C2 ⊆ Aut C6216C6.11D18216,7
C6.12D18 = C27:D4φ: D18/C18C2 ⊆ Aut C61082C6.12D18216,8
C6.13D18 = C22xD27φ: D18/C18C2 ⊆ Aut C6108C6.13D18216,23
C6.14D18 = C12.D9φ: D18/C18C2 ⊆ Aut C6216C6.14D18216,63
C6.15D18 = C4xC9:S3φ: D18/C18C2 ⊆ Aut C6108C6.15D18216,64
C6.16D18 = C36:S3φ: D18/C18C2 ⊆ Aut C6108C6.16D18216,65
C6.17D18 = C2xC9:Dic3φ: D18/C18C2 ⊆ Aut C6216C6.17D18216,69
C6.18D18 = C6.D18φ: D18/C18C2 ⊆ Aut C6108C6.18D18216,70
C6.19D18 = C3xDic18central extension (φ=1)722C6.19D18216,43
C6.20D18 = C12xD9central extension (φ=1)722C6.20D18216,45
C6.21D18 = C3xD36central extension (φ=1)722C6.21D18216,46
C6.22D18 = C6xDic9central extension (φ=1)72C6.22D18216,55
C6.23D18 = C3xC9:D4central extension (φ=1)362C6.23D18216,57

׿
x
:
Z
F
o
wr
Q
<