Direct product G=NxQ with N=C6 and Q=D18
Semidirect products G=N:Q with N=C6 and Q=D18
Non-split extensions G=N.Q with N=C6 and Q=D18
extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1D18 = C9:Dic6 | φ: D18/D9 → C2 ⊆ Aut C6 | 72 | 4- | C6.1D18 | 216,26 |
C6.2D18 = Dic3xD9 | φ: D18/D9 → C2 ⊆ Aut C6 | 72 | 4- | C6.2D18 | 216,27 |
C6.3D18 = C18.D6 | φ: D18/D9 → C2 ⊆ Aut C6 | 36 | 4+ | C6.3D18 | 216,28 |
C6.4D18 = C3:D36 | φ: D18/D9 → C2 ⊆ Aut C6 | 36 | 4+ | C6.4D18 | 216,29 |
C6.5D18 = S3xDic9 | φ: D18/D9 → C2 ⊆ Aut C6 | 72 | 4- | C6.5D18 | 216,30 |
C6.6D18 = D6:D9 | φ: D18/D9 → C2 ⊆ Aut C6 | 72 | 4- | C6.6D18 | 216,31 |
C6.7D18 = C9:D12 | φ: D18/D9 → C2 ⊆ Aut C6 | 36 | 4+ | C6.7D18 | 216,32 |
C6.8D18 = Dic54 | φ: D18/C18 → C2 ⊆ Aut C6 | 216 | 2- | C6.8D18 | 216,4 |
C6.9D18 = C4xD27 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | 2 | C6.9D18 | 216,5 |
C6.10D18 = D108 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | 2+ | C6.10D18 | 216,6 |
C6.11D18 = C2xDic27 | φ: D18/C18 → C2 ⊆ Aut C6 | 216 | | C6.11D18 | 216,7 |
C6.12D18 = C27:D4 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | 2 | C6.12D18 | 216,8 |
C6.13D18 = C22xD27 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | | C6.13D18 | 216,23 |
C6.14D18 = C12.D9 | φ: D18/C18 → C2 ⊆ Aut C6 | 216 | | C6.14D18 | 216,63 |
C6.15D18 = C4xC9:S3 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | | C6.15D18 | 216,64 |
C6.16D18 = C36:S3 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | | C6.16D18 | 216,65 |
C6.17D18 = C2xC9:Dic3 | φ: D18/C18 → C2 ⊆ Aut C6 | 216 | | C6.17D18 | 216,69 |
C6.18D18 = C6.D18 | φ: D18/C18 → C2 ⊆ Aut C6 | 108 | | C6.18D18 | 216,70 |
C6.19D18 = C3xDic18 | central extension (φ=1) | 72 | 2 | C6.19D18 | 216,43 |
C6.20D18 = C12xD9 | central extension (φ=1) | 72 | 2 | C6.20D18 | 216,45 |
C6.21D18 = C3xD36 | central extension (φ=1) | 72 | 2 | C6.21D18 | 216,46 |
C6.22D18 = C6xDic9 | central extension (φ=1) | 72 | | C6.22D18 | 216,55 |
C6.23D18 = C3xC9:D4 | central extension (φ=1) | 36 | 2 | C6.23D18 | 216,57 |
x
:
Z
F
o
wr
Q
<