direct product, metabelian, soluble, monomial, A-group
Aliases: A4×F5, C5⋊(C4×A4), (C2×C10)⋊C12, D5.(C2×A4), (C5×A4)⋊2C4, C22⋊(C3×F5), (C22×F5)⋊C3, (D5×A4).2C2, (C22×D5).C6, SmallGroup(240,193)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C10 — A4×F5 |
Generators and relations for A4×F5
G = < a,b,c,d,e | a2=b2=c3=d5=e4=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Character table of A4×F5
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 10 | 12A | 12B | 12C | 12D | 15A | 15B | |
size | 1 | 3 | 5 | 15 | 4 | 4 | 5 | 5 | 15 | 15 | 4 | 20 | 20 | 12 | 20 | 20 | 20 | 20 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ3 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ32 | ζ3 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | 1 | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | i | -i | -i | i | 1 | ζ65 | ζ6 | 1 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | ζ32 | ζ3 | linear of order 12 |
ρ10 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -i | i | i | -i | 1 | ζ6 | ζ65 | 1 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | ζ3 | ζ32 | linear of order 12 |
ρ11 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -i | i | i | -i | 1 | ζ65 | ζ6 | 1 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | ζ32 | ζ3 | linear of order 12 |
ρ12 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | i | -i | -i | i | 1 | ζ6 | ζ65 | 1 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | ζ3 | ζ32 | linear of order 12 |
ρ13 | 3 | -1 | 3 | -1 | 0 | 0 | -3 | -3 | 1 | 1 | 3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | -1 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 3 | -1 | -3 | 1 | 0 | 0 | -3i | 3i | -i | i | 3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×A4 |
ρ16 | 3 | -1 | -3 | 1 | 0 | 0 | 3i | -3i | i | -i | 3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4×A4 |
ρ17 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from F5 |
ρ18 | 4 | 4 | 0 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex lifted from C3×F5 |
ρ19 | 4 | 4 | 0 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex lifted from C3×F5 |
ρ20 | 12 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)
(6 11 16)(7 12 17)(8 13 18)(9 14 19)(10 15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)
G:=sub<Sym(20)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (6,11,16)(7,12,17)(8,13,18)(9,14,19)(10,15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20), (6,11,16)(7,12,17)(8,13,18)(9,14,19)(10,15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20)], [(6,11,16),(7,12,17),(8,13,18),(9,14,19),(10,15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19)]])
G:=TransitiveGroup(20,68);
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 18 15 19)(13 20 14 17)(21 26)(22 28 25 29)(23 30 24 27)
G:=sub<Sym(30)| (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,18,15,19),(13,20,14,17),(21,26),(22,28,25,29),(23,30,24,27)]])
G:=TransitiveGroup(30,56);
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(22 23 25 24)(27 28 30 29)
G:=sub<Sym(30)| (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(22,23,25,24),(27,28,30,29)]])
G:=TransitiveGroup(30,57);
A4×F5 is a maximal quotient of SL2(𝔽3).F5
Matrix representation of A4×F5 ►in GL7(𝔽61)
1 | 5 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 |
48 | 59 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 5 | 0 | 0 | 0 | 0 |
48 | 60 | 59 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 60 | 60 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 60 | 60 | 60 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
60 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(7,GF(61))| [1,0,48,0,0,0,0,5,60,59,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,48,0,0,0,0,0,0,60,0,0,0,0,0,5,59,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,48,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,1,0,0,0,0,60,0,0,1,0,0,0,60,0,0,0],[60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,1,60,0,0,0,0,0,0,60,0,0,0,0,1,0,60] >;
A4×F5 in GAP, Magma, Sage, TeX
A_4\times F_5
% in TeX
G:=Group("A4xF5");
// GroupNames label
G:=SmallGroup(240,193);
// by ID
G=gap.SmallGroup(240,193);
# by ID
G:=PCGroup([6,-2,-3,-2,-2,2,-5,36,441,190,3461,1169]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^5=e^4=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of A4×F5 in TeX
Character table of A4×F5 in TeX