Copied to
clipboard

G = C3×D39order 234 = 2·32·13

Direct product of C3 and D39

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3×D39, C395C6, C392S3, C321D13, C3⋊(C3×D13), C133(C3×S3), (C3×C39)⋊2C2, SmallGroup(234,13)

Series: Derived Chief Lower central Upper central

C1C39 — C3×D39
C1C13C39C3×C39 — C3×D39
C39 — C3×D39
C1C3

Generators and relations for C3×D39
 G = < a,b,c | a3=b39=c2=1, ab=ba, ac=ca, cbc=b-1 >

39C2
2C3
13S3
39C6
3D13
2C39
13C3×S3
3C3×D13

Smallest permutation representation of C3×D39
On 78 points
Generators in S78
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)(40 53 66)(41 54 67)(42 55 68)(43 56 69)(44 57 70)(45 58 71)(46 59 72)(47 60 73)(48 61 74)(49 62 75)(50 63 76)(51 64 77)(52 65 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 70)(2 69)(3 68)(4 67)(5 66)(6 65)(7 64)(8 63)(9 62)(10 61)(11 60)(12 59)(13 58)(14 57)(15 56)(16 55)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)

G:=sub<Sym(78)| (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,53,66)(41,54,67)(42,55,68)(43,56,69)(44,57,70)(45,58,71)(46,59,72)(47,60,73)(48,61,74)(49,62,75)(50,63,76)(51,64,77)(52,65,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,70)(2,69)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)>;

G:=Group( (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,53,66)(41,54,67)(42,55,68)(43,56,69)(44,57,70)(45,58,71)(46,59,72)(47,60,73)(48,61,74)(49,62,75)(50,63,76)(51,64,77)(52,65,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78), (1,70)(2,69)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71) );

G=PermutationGroup([[(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26),(40,53,66),(41,54,67),(42,55,68),(43,56,69),(44,57,70),(45,58,71),(46,59,72),(47,60,73),(48,61,74),(49,62,75),(50,63,76),(51,64,77),(52,65,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,70),(2,69),(3,68),(4,67),(5,66),(6,65),(7,64),(8,63),(9,62),(10,61),(11,60),(12,59),(13,58),(14,57),(15,56),(16,55),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71)]])

C3×D39 is a maximal subgroup of   C3×S3×D13  D39⋊S3

63 conjugacy classes

class 1  2 3A3B3C3D3E6A6B13A···13F39A···39AV
order12333336613···1339···39
size1391122239392···22···2

63 irreducible representations

dim1111222222
type+++++
imageC1C2C3C6S3C3×S3D13C3×D13D39C3×D39
kernelC3×D39C3×C39D39C39C39C13C32C3C3C1
# reps1122126121224

Matrix representation of C3×D39 in GL2(𝔽79) generated by

550
055
,
320
042
,
042
320
G:=sub<GL(2,GF(79))| [55,0,0,55],[32,0,0,42],[0,32,42,0] >;

C3×D39 in GAP, Magma, Sage, TeX

C_3\times D_{39}
% in TeX

G:=Group("C3xD39");
// GroupNames label

G:=SmallGroup(234,13);
// by ID

G=gap.SmallGroup(234,13);
# by ID

G:=PCGroup([4,-2,-3,-3,-13,146,3459]);
// Polycyclic

G:=Group<a,b,c|a^3=b^39=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×D39 in TeX

׿
×
𝔽