Extensions 1→N→G→Q→1 with N=S3×Dic5 and Q=C2

Direct product G=N×Q with N=S3×Dic5 and Q=C2
dρLabelID
C2×S3×Dic5120C2xS3xDic5240,142

Semidirect products G=N:Q with N=S3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic5)⋊1C2 = D12⋊D5φ: C2/C1C2 ⊆ Out S3×Dic51204(S3xDic5):1C2240,129
(S3×Dic5)⋊2C2 = D125D5φ: C2/C1C2 ⊆ Out S3×Dic51204-(S3xDic5):2C2240,133
(S3×Dic5)⋊3C2 = C30.C23φ: C2/C1C2 ⊆ Out S3×Dic51204-(S3xDic5):3C2240,141
(S3×Dic5)⋊4C2 = Dic3.D10φ: C2/C1C2 ⊆ Out S3×Dic51204(S3xDic5):4C2240,143
(S3×Dic5)⋊5C2 = S3×C5⋊D4φ: C2/C1C2 ⊆ Out S3×Dic5604(S3xDic5):5C2240,150
(S3×Dic5)⋊6C2 = C4×S3×D5φ: trivial image604(S3xDic5):6C2240,135

Non-split extensions G=N.Q with N=S3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic5).1C2 = S3×Dic10φ: C2/C1C2 ⊆ Out S3×Dic51204-(S3xDic5).1C2240,128
(S3×Dic5).2C2 = S3×C5⋊C8φ: C2/C1C2 ⊆ Out S3×Dic51208-(S3xDic5).2C2240,98
(S3×Dic5).3C2 = D6.F5φ: C2/C1C2 ⊆ Out S3×Dic51208-(S3xDic5).3C2240,100

׿
×
𝔽