Extensions 1→N→G→Q→1 with N=D60 and Q=C2

Direct product G=N×Q with N=D60 and Q=C2
dρLabelID
C2×D60120C2xD60240,177

Semidirect products G=N:Q with N=D60 and Q=C2
extensionφ:Q→Out NdρLabelID
D601C2 = D120φ: C2/C1C2 ⊆ Out D601202+D60:1C2240,68
D602C2 = D4⋊D15φ: C2/C1C2 ⊆ Out D601204+D60:2C2240,76
D603C2 = D4×D15φ: C2/C1C2 ⊆ Out D60604+D60:3C2240,179
D604C2 = Q83D15φ: C2/C1C2 ⊆ Out D601204+D60:4C2240,182
D605C2 = C3⋊D40φ: C2/C1C2 ⊆ Out D601204+D60:5C2240,14
D606C2 = D60⋊C2φ: C2/C1C2 ⊆ Out D601204+D60:6C2240,130
D607C2 = S3×D20φ: C2/C1C2 ⊆ Out D60604+D60:7C2240,137
D608C2 = C5⋊D24φ: C2/C1C2 ⊆ Out D601204+D60:8C2240,15
D609C2 = C12.28D10φ: C2/C1C2 ⊆ Out D601204+D60:9C2240,134
D6010C2 = D5×D12φ: C2/C1C2 ⊆ Out D60604+D60:10C2240,136
D6011C2 = D6011C2φ: trivial image1202D60:11C2240,178

Non-split extensions G=N.Q with N=D60 and Q=C2
extensionφ:Q→Out NdρLabelID
D60.1C2 = C24⋊D5φ: C2/C1C2 ⊆ Out D601202D60.1C2240,67
D60.2C2 = Q82D15φ: C2/C1C2 ⊆ Out D601204+D60.2C2240,78
D60.3C2 = C15⋊SD16φ: C2/C1C2 ⊆ Out D601204+D60.3C2240,19
D60.4C2 = Dic6⋊D5φ: C2/C1C2 ⊆ Out D601204+D60.4C2240,21

׿
×
𝔽