Extensions 1→N→G→Q→1 with N=C15 and Q=C2×C8

Direct product G=N×Q with N=C15 and Q=C2×C8
dρLabelID
C2×C120240C2xC120240,84

Semidirect products G=N:Q with N=C15 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C151(C2×C8) = S3×C5⋊C8φ: C2×C8/C2C2×C4 ⊆ Aut C151208-C15:1(C2xC8)240,98
C152(C2×C8) = D15⋊C8φ: C2×C8/C2C2×C4 ⊆ Aut C151208+C15:2(C2xC8)240,99
C153(C2×C8) = C60.C4φ: C2×C8/C4C4 ⊆ Aut C151204C15:3(C2xC8)240,118
C154(C2×C8) = C3×D5⋊C8φ: C2×C8/C4C4 ⊆ Aut C151204C15:4(C2xC8)240,111
C155(C2×C8) = D5×C3⋊C8φ: C2×C8/C4C22 ⊆ Aut C151204C15:5(C2xC8)240,7
C156(C2×C8) = S3×C52C8φ: C2×C8/C4C22 ⊆ Aut C151204C15:6(C2xC8)240,8
C157(C2×C8) = D152C8φ: C2×C8/C4C22 ⊆ Aut C151204C15:7(C2xC8)240,9
C158(C2×C8) = C2×C15⋊C8φ: C2×C8/C22C4 ⊆ Aut C15240C15:8(C2xC8)240,122
C159(C2×C8) = C6×C5⋊C8φ: C2×C8/C22C4 ⊆ Aut C15240C15:9(C2xC8)240,115
C1510(C2×C8) = C8×D15φ: C2×C8/C8C2 ⊆ Aut C151202C15:10(C2xC8)240,65
C1511(C2×C8) = D5×C24φ: C2×C8/C8C2 ⊆ Aut C151202C15:11(C2xC8)240,33
C1512(C2×C8) = S3×C40φ: C2×C8/C8C2 ⊆ Aut C151202C15:12(C2xC8)240,49
C1513(C2×C8) = C2×C153C8φ: C2×C8/C2×C4C2 ⊆ Aut C15240C15:13(C2xC8)240,70
C1514(C2×C8) = C6×C52C8φ: C2×C8/C2×C4C2 ⊆ Aut C15240C15:14(C2xC8)240,38
C1515(C2×C8) = C10×C3⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C15240C15:15(C2xC8)240,54


׿
×
𝔽