Extensions 1→N→G→Q→1 with N=D6 and Q=D10

Direct product G=N×Q with N=D6 and Q=D10
dρLabelID
C22×S3×D560C2^2xS3xD5240,202

Semidirect products G=N:Q with N=D6 and Q=D10
extensionφ:Q→Out NdρLabelID
D61D10 = D5×D12φ: D10/D5C2 ⊆ Out D6604+D6:1D10240,136
D62D10 = C20⋊D6φ: D10/D5C2 ⊆ Out D6604D6:2D10240,138
D63D10 = D5×C3⋊D4φ: D10/D5C2 ⊆ Out D6604D6:3D10240,149
D64D10 = D10⋊D6φ: D10/D5C2 ⊆ Out D6604+D6:4D10240,151
D65D10 = C2×C15⋊D4φ: D10/C10C2 ⊆ Out D6120D6:5D10240,145
D66D10 = C2×C5⋊D12φ: D10/C10C2 ⊆ Out D6120D6:6D10240,147
D67D10 = S3×C5⋊D4φ: D10/C10C2 ⊆ Out D6604D6:7D10240,150

Non-split extensions G=N.Q with N=D6 and Q=D10
extensionφ:Q→Out NdρLabelID
D6.1D10 = D12⋊D5φ: D10/D5C2 ⊆ Out D61204D6.1D10240,129
D6.2D10 = D125D5φ: D10/D5C2 ⊆ Out D61204-D6.2D10240,133
D6.3D10 = C30.C23φ: D10/D5C2 ⊆ Out D61204-D6.3D10240,141
D6.4D10 = Dic3.D10φ: D10/D5C2 ⊆ Out D61204D6.4D10240,143
D6.5D10 = D205S3φ: D10/C10C2 ⊆ Out D61204-D6.5D10240,126
D6.6D10 = D60⋊C2φ: D10/C10C2 ⊆ Out D61204+D6.6D10240,130
D6.7D10 = D6.D10φ: D10/C10C2 ⊆ Out D61204D6.7D10240,132
D6.8D10 = S3×Dic10φ: trivial image1204-D6.8D10240,128
D6.9D10 = C4×S3×D5φ: trivial image604D6.9D10240,135
D6.10D10 = S3×D20φ: trivial image604+D6.10D10240,137
D6.11D10 = C2×S3×Dic5φ: trivial image120D6.11D10240,142

׿
×
𝔽