Extensions 1→N→G→Q→1 with N=C21 and Q=D6

Direct product G=N×Q with N=C21 and Q=D6
dρLabelID
S3×C42842S3xC42252,42

Semidirect products G=N:Q with N=C21 and Q=D6
extensionφ:Q→Aut NdρLabelID
C211D6 = D7×C3⋊S3φ: D6/C3C22 ⊆ Aut C2163C21:1D6252,34
C212D6 = S3×D21φ: D6/C3C22 ⊆ Aut C21424+C21:2D6252,36
C213D6 = D21⋊S3φ: D6/C3C22 ⊆ Aut C21424C21:3D6252,37
C214D6 = C3×S3×D7φ: D6/S3C2 ⊆ Aut C21424C21:4D6252,33
C215D6 = S32×C7φ: D6/S3C2 ⊆ Aut C21424C21:5D6252,35
C216D6 = C2×C3⋊D21φ: D6/C6C2 ⊆ Aut C21126C21:6D6252,45
C217D6 = C6×D21φ: D6/C6C2 ⊆ Aut C21842C21:7D6252,43
C218D6 = C14×C3⋊S3φ: D6/C6C2 ⊆ Aut C21126C21:8D6252,44

Non-split extensions G=N.Q with N=C21 and Q=D6
extensionφ:Q→Aut NdρLabelID
C21.D6 = D7×D9φ: D6/C3C22 ⊆ Aut C21634+C21.D6252,8
C21.2D6 = D126φ: D6/C6C2 ⊆ Aut C211262+C21.2D6252,14
C21.3D6 = C14×D9φ: D6/C6C2 ⊆ Aut C211262C21.3D6252,13

׿
×
𝔽