Copied to
clipboard

G = C50.C10order 500 = 22·53

The non-split extension by C50 of C10 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C50.C10, C252C20, Dic25⋊C5, C52.Dic5, 5- 1+22C4, C2.(C25⋊C10), C10.3(C5×D5), (C5×C10).2D5, C5.3(C5×Dic5), (C2×5- 1+2).C2, SmallGroup(500,9)

Series: Derived Chief Lower central Upper central

C1C25 — C50.C10
C1C5C25C50C2×5- 1+2 — C50.C10
C25 — C50.C10
C1C2

Generators and relations for C50.C10
 G = < a,b | a50=1, b10=a25, bab-1=a9 >

5C5
25C4
5C10
2C25
2C25
5Dic5
25C20
2C50
2C50
5C5×Dic5

Smallest permutation representation of C50.C10
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 62 26 87)(2 51 47 56 42 61 37 66 32 71 27 76 22 81 17 86 12 91 7 96)(3 90 18 75 33 60 48 95 13 80 28 65 43 100 8 85 23 70 38 55)(4 79 39 94 24 59 9 74 44 89 29 54 14 69 49 84 34 99 19 64)(5 68 10 63 15 58 20 53 25 98 30 93 35 88 40 83 45 78 50 73)(6 57 31 82)(11 52 36 77)(16 97 41 72)(21 92 46 67)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,62,26,87)(2,51,47,56,42,61,37,66,32,71,27,76,22,81,17,86,12,91,7,96)(3,90,18,75,33,60,48,95,13,80,28,65,43,100,8,85,23,70,38,55)(4,79,39,94,24,59,9,74,44,89,29,54,14,69,49,84,34,99,19,64)(5,68,10,63,15,58,20,53,25,98,30,93,35,88,40,83,45,78,50,73)(6,57,31,82)(11,52,36,77)(16,97,41,72)(21,92,46,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,62,26,87)(2,51,47,56,42,61,37,66,32,71,27,76,22,81,17,86,12,91,7,96)(3,90,18,75,33,60,48,95,13,80,28,65,43,100,8,85,23,70,38,55)(4,79,39,94,24,59,9,74,44,89,29,54,14,69,49,84,34,99,19,64)(5,68,10,63,15,58,20,53,25,98,30,93,35,88,40,83,45,78,50,73)(6,57,31,82)(11,52,36,77)(16,97,41,72)(21,92,46,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,62,26,87),(2,51,47,56,42,61,37,66,32,71,27,76,22,81,17,86,12,91,7,96),(3,90,18,75,33,60,48,95,13,80,28,65,43,100,8,85,23,70,38,55),(4,79,39,94,24,59,9,74,44,89,29,54,14,69,49,84,34,99,19,64),(5,68,10,63,15,58,20,53,25,98,30,93,35,88,40,83,45,78,50,73),(6,57,31,82),(11,52,36,77),(16,97,41,72),(21,92,46,67)]])

44 conjugacy classes

class 1  2 4A4B5A5B5C5D5E5F10A10B10C10D10E10F20A···20H25A···25J50A···50J
order124455555510101010101020···2025···2550···50
size11252522555522555525···2510···1010···10

44 irreducible representations

dim11111110102222
type+++-+-
imageC1C2C4C5C10C20C25⋊C10C50.C10D5Dic5C5×D5C5×Dic5
kernelC50.C10C2×5- 1+25- 1+2Dic25C50C25C2C1C5×C10C52C10C5
# reps112448222288

Matrix representation of C50.C10 in GL10(𝔽101)

797921218080234400
1122227979782100
808021217979002344
7979222211007821
7910000000000
1000000000
0220100022080
021797800021058
01000001021080
022007978043058
,
268000000000
137500000000
30307171171700963
434358582121009354
88881717848430400
99979744127500
8054343462882697943
5824606076633488464
845026437575892943
7111515567672697464

G:=sub<GL(10,GF(101))| [79,1,80,79,79,1,0,0,0,0,79,1,80,79,100,0,22,21,100,22,21,22,21,22,0,0,0,79,0,0,21,22,21,22,0,0,1,78,0,0,80,79,79,1,0,0,0,0,0,79,80,79,79,1,0,0,0,0,1,78,23,78,0,0,0,0,0,0,0,0,44,21,0,0,0,0,22,21,21,43,0,0,23,78,0,0,0,0,0,0,0,0,44,21,0,0,80,58,80,58],[26,13,30,43,88,9,80,58,84,71,80,75,30,43,88,9,54,24,50,11,0,0,71,58,17,97,34,60,26,51,0,0,71,58,17,97,34,60,43,55,0,0,17,21,84,4,62,76,75,67,0,0,17,21,84,4,88,63,75,67,0,0,0,0,30,12,26,34,8,26,0,0,0,0,4,75,97,88,92,97,0,0,9,93,0,0,9,4,9,4,0,0,63,54,0,0,43,64,43,64] >;

C50.C10 in GAP, Magma, Sage, TeX

C_{50}.C_{10}
% in TeX

G:=Group("C50.C10");
// GroupNames label

G:=SmallGroup(500,9);
// by ID

G=gap.SmallGroup(500,9);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,3603,1208,418,10004]);
// Polycyclic

G:=Group<a,b|a^50=1,b^10=a^25,b*a*b^-1=a^9>;
// generators/relations

Export

Subgroup lattice of C50.C10 in TeX

׿
×
𝔽