Copied to
clipboard

G = C3xS3xD7order 252 = 22·32·7

Direct product of C3, S3 and D7

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3xS3xD7, C21:4D6, D21:3C6, C32:3D14, C7:4(S3xC6), C3:1(C6xD7), (S3xC7):3C6, C21:5(C2xC6), (C3xD7):3C6, (S3xC21):2C2, (C3xD21):1C2, (C3xC21):1C22, (C32xD7):1C2, SmallGroup(252,33)

Series: Derived Chief Lower central Upper central

C1C21 — C3xS3xD7
C1C7C21C3xC21C32xD7 — C3xS3xD7
C21 — C3xS3xD7
C1C3

Generators and relations for C3xS3xD7
 G = < a,b,c,d,e | a3=b3=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 204 in 44 conjugacy classes, 20 normal (all characteristic)
Quotients: C1, C2, C3, C22, S3, C6, D6, C2xC6, D7, C3xS3, D14, S3xC6, C3xD7, S3xD7, C6xD7, C3xS3xD7
3C2
7C2
21C2
2C3
21C22
3C6
7C6
7C6
7S3
14C6
21C6
3C14
3D7
2C21
7D6
21C2xC6
7C3xS3
7C3xC6
3D14
2C3xD7
3C3xD7
3C42
7S3xC6
3C6xD7

Smallest permutation representation of C3xS3xD7
On 42 points
Generators in S42
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)

G:=sub<Sym(42)| (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)>;

G:=Group( (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41) );

G=PermutationGroup([[(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35)], [(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41)]])

45 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I7A7B7C14A14B14C21A···21F21G···21O42A···42F
order12223333366666666677714141421···2121···2142···42
size1372111222337714141421212226662···24···46···6

45 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D6D7C3xS3D14S3xC6C3xD7C6xD7S3xD7C3xS3xD7
kernelC3xS3xD7C32xD7S3xC21C3xD21S3xD7S3xC7C3xD7D21C3xD7C21C3xS3D7C32C7S3C3C3C1
# reps111122221132326636

Matrix representation of C3xS3xD7 in GL4(F43) generated by

1000
0100
0060
0006
,
1000
0100
0060
003836
,
1000
0100
00137
00042
,
16100
264200
0010
0001
,
193400
402400
0010
0001
G:=sub<GL(4,GF(43))| [1,0,0,0,0,1,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,1,0,0,0,0,6,38,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,37,42],[16,26,0,0,1,42,0,0,0,0,1,0,0,0,0,1],[19,40,0,0,34,24,0,0,0,0,1,0,0,0,0,1] >;

C3xS3xD7 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_7
% in TeX

G:=Group("C3xS3xD7");
// GroupNames label

G:=SmallGroup(252,33);
// by ID

G=gap.SmallGroup(252,33);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-7,248,5404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3xS3xD7 in TeX

׿
x
:
Z
F
o
wr
Q
<