Copied to
clipboard

G = D21⋊S3order 252 = 22·32·7

The semidirect product of D21 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, A-group

Aliases: D21⋊S3, C213D6, C322D14, C72S32, C3⋊S3⋊D7, C33(S3×D7), (C3×D21)⋊3C2, (C3×C21)⋊4C22, (C7×C3⋊S3)⋊2C2, SmallGroup(252,37)

Series: Derived Chief Lower central Upper central

C1C3×C21 — D21⋊S3
C1C7C21C3×C21C3×D21 — D21⋊S3
C3×C21 — D21⋊S3
C1

Generators and relations for D21⋊S3
 G = < a,b,c,d | a21=b2=c3=d2=1, bab=a-1, ac=ca, dad=a8, bc=cb, dbd=a7b, dcd=c-1 >

9C2
21C2
21C2
2C3
63C22
3S3
3S3
6S3
7S3
7S3
21C6
21C6
3D7
3D7
9C14
2C21
21D6
21D6
7C3×S3
7C3×S3
9D14
3C3×D7
3S3×C7
3S3×C7
3C3×D7
6S3×C7
7S32
3S3×D7
3S3×D7

Character table of D21⋊S3

 class 12A2B2C3A3B3C6A6B7A7B7C14A14B14C21A21B21C21D21E21F21G21H21I21J21K21L
 size 1921212244242222181818444444444444
ρ1111111111111111111111111111    trivial
ρ21-1-11111-11111-1-1-1111111111111    linear of order 2
ρ311-1-1111-1-1111111111111111111    linear of order 2
ρ41-11-11111-1111-1-1-1111111111111    linear of order 2
ρ520202-1-1-10222000-1-1-1-1-1-1-1-1222-1    orthogonal lifted from S3
ρ6200-2-12-101222000-1-1-1222-1-1-1-1-1-1    orthogonal lifted from D6
ρ72002-12-10-1222000-1-1-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-202-1-110222000-1-1-1-1-1-1-1-1222-1    orthogonal lifted from D6
ρ9220022200ζ767ζ7572ζ7473ζ7572ζ767ζ7473ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ767ζ7473ζ767ζ7572ζ7572    orthogonal lifted from D7
ρ10220022200ζ7572ζ7473ζ767ζ7473ζ7572ζ767ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7572ζ767ζ7572ζ7473ζ7473    orthogonal lifted from D7
ρ112-20022200ζ7572ζ7473ζ76774737572767ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7572ζ767ζ7572ζ7473ζ7473    orthogonal lifted from D14
ρ122-20022200ζ767ζ7572ζ747375727677473ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ767ζ7473ζ767ζ7572ζ7572    orthogonal lifted from D14
ρ132-20022200ζ7473ζ767ζ757276774737572ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ7473ζ7572ζ7473ζ767ζ767    orthogonal lifted from D14
ρ14220022200ζ7473ζ767ζ7572ζ767ζ7473ζ7572ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ7473ζ7572ζ7473ζ767ζ767    orthogonal lifted from D7
ρ154000-2-2100444000111-2-2-211-2-2-21    orthogonal lifted from S32
ρ1640004-2-20076+2ζ775+2ζ7274+2ζ730007473757276774737572767747376774+2ζ7376+2ζ775+2ζ727572    orthogonal lifted from S3×D7
ρ1740004-2-20075+2ζ7274+2ζ7376+2ζ70007677473757276774737572767757276+2ζ775+2ζ7274+2ζ737473    orthogonal lifted from S3×D7
ρ184000-24-20074+2ζ7376+2ζ775+2ζ720007572767747375+2ζ7276+2ζ774+2ζ737572747375727473767767    orthogonal lifted from S3×D7
ρ194000-24-20076+2ζ775+2ζ7274+2ζ730007473757276774+2ζ7375+2ζ7276+2ζ77473767747376775727572    orthogonal lifted from S3×D7
ρ2040004-2-20074+2ζ7376+2ζ775+2ζ7200075727677473757276774737572747375+2ζ7274+2ζ7376+2ζ7767    orthogonal lifted from S3×D7
ρ214000-24-20075+2ζ7274+2ζ7376+2ζ70007677473757276+2ζ774+2ζ7375+2ζ727677572767757274737473    orthogonal lifted from S3×D7
ρ224000-2-210075+2ζ7274+2ζ7376+2ζ700076+2ζ774+2ζ7375+2ζ72767747375727677572767757274737473    complex faithful
ρ234000-2-210076+2ζ775+2ζ7274+2ζ7300074+2ζ7375+2ζ7276774737572767747376+2ζ7747376775727572    complex faithful
ρ244000-2-210075+2ζ7274+2ζ7376+2ζ7000767747375727677473757276+2ζ775+2ζ727677572747374+2ζ73    complex faithful
ρ254000-2-210074+2ζ7376+2ζ775+2ζ72000757276+2ζ774+2ζ737572767747375+2ζ72747375727473767767    complex faithful
ρ264000-2-210076+2ζ775+2ζ7274+2ζ730007473757276+2ζ77473757276774+2ζ737677473767757275+2ζ72    complex faithful
ρ274000-2-210074+2ζ7376+2ζ775+2ζ7200075+2ζ72767747375727677473757274+2ζ737572747376776+2ζ7    complex faithful

Smallest permutation representation of D21⋊S3
On 42 points
Generators in S42
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 42)(10 41)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(21 30)
(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)
(2 9)(3 17)(5 12)(6 20)(8 15)(11 18)(14 21)(22 29)(23 37)(25 32)(26 40)(28 35)(31 38)(34 41)

G:=sub<Sym(42)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (2,9)(3,17)(5,12)(6,20)(8,15)(11,18)(14,21)(22,29)(23,37)(25,32)(26,40)(28,35)(31,38)(34,41)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (2,9)(3,17)(5,12)(6,20)(8,15)(11,18)(14,21)(22,29)(23,37)(25,32)(26,40)(28,35)(31,38)(34,41) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,42),(10,41),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(21,30)], [(1,8,15),(2,9,16),(3,10,17),(4,11,18),(5,12,19),(6,13,20),(7,14,21),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35)], [(2,9),(3,17),(5,12),(6,20),(8,15),(11,18),(14,21),(22,29),(23,37),(25,32),(26,40),(28,35),(31,38),(34,41)]])

Matrix representation of D21⋊S3 in GL6(𝔽43)

1600000
8350000
001000
000100
0000042
0000142
,
30390000
42130000
0042000
0004200
0000142
0000042
,
100000
010000
0042100
0042000
000010
000001
,
4200000
0420000
000100
001000
000001
000010

G:=sub<GL(6,GF(43))| [16,8,0,0,0,0,0,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,42,42],[30,42,0,0,0,0,39,13,0,0,0,0,0,0,42,0,0,0,0,0,0,42,0,0,0,0,0,0,1,0,0,0,0,0,42,42],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,42,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[42,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D21⋊S3 in GAP, Magma, Sage, TeX

D_{21}\rtimes S_3
% in TeX

G:=Group("D21:S3");
// GroupNames label

G:=SmallGroup(252,37);
// by ID

G=gap.SmallGroup(252,37);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-7,122,67,248,5404]);
// Polycyclic

G:=Group<a,b,c,d|a^21=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^8,b*c=c*b,d*b*d=a^7*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D21⋊S3 in TeX
Character table of D21⋊S3 in TeX

׿
×
𝔽