direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×D9, D63⋊C2, C9⋊1D14, C7⋊1D18, C63⋊C22, C21.D6, (C7×D9)⋊C2, (C9×D7)⋊C2, C3.(S3×D7), (C3×D7).S3, SmallGroup(252,8)
Series: Derived ►Chief ►Lower central ►Upper central
C63 — D7×D9 |
Generators and relations for D7×D9
G = < a,b,c,d | a7=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of D7×D9
class | 1 | 2A | 2B | 2C | 3 | 6 | 7A | 7B | 7C | 9A | 9B | 9C | 14A | 14B | 14C | 18A | 18B | 18C | 21A | 21B | 21C | 63A | 63B | 63C | 63D | 63E | 63F | 63G | 63H | 63I | |
size | 1 | 7 | 9 | 63 | 2 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 18 | 18 | 18 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ7 | 2 | 0 | -2 | 0 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | 2 | 2 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 0 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ8 | 2 | 0 | -2 | 0 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | 2 | 2 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 0 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ9 | 2 | 0 | -2 | 0 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | 2 | 2 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 0 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ10 | 2 | 0 | 2 | 0 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | 2 | 2 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 0 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ11 | 2 | 0 | 2 | 0 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | 2 | 2 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 0 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ12 | 2 | 0 | 2 | 0 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | 2 | 2 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 0 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ13 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | -2 | 0 | 0 | -1 | 1 | 2 | 2 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ17 | 2 | -2 | 0 | 0 | -1 | 1 | 2 | 2 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ18 | 2 | -2 | 0 | 0 | -1 | 1 | 2 | 2 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ19 | 4 | 0 | 0 | 0 | 4 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from S3×D7 |
ρ20 | 4 | 0 | 0 | 0 | 4 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from S3×D7 |
ρ21 | 4 | 0 | 0 | 0 | 4 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from S3×D7 |
ρ22 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | orthogonal faithful |
ρ23 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | orthogonal faithful |
ρ25 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | orthogonal faithful |
ρ26 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | orthogonal faithful |
ρ27 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | orthogonal faithful |
ρ28 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | orthogonal faithful |
ρ29 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 2ζ97+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | orthogonal faithful |
ρ30 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ97+2ζ92 | 2ζ95+2ζ94 | 2ζ98+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | ζ95ζ75+ζ95ζ72+ζ94ζ75+ζ94ζ72 | ζ98ζ75+ζ98ζ72+ζ9ζ75+ζ9ζ72 | ζ97ζ74+ζ97ζ73+ζ92ζ74+ζ92ζ73 | ζ95ζ74+ζ95ζ73+ζ94ζ74+ζ94ζ73 | ζ98ζ74+ζ98ζ73+ζ9ζ74+ζ9ζ73 | ζ97ζ76+ζ97ζ7+ζ92ζ76+ζ92ζ7 | ζ95ζ76+ζ95ζ7+ζ94ζ76+ζ94ζ7 | ζ98ζ76+ζ98ζ7+ζ9ζ76+ζ9ζ7 | ζ97ζ75+ζ97ζ72+ζ92ζ75+ζ92ζ72 | orthogonal faithful |
(1 40 15 62 19 52 28)(2 41 16 63 20 53 29)(3 42 17 55 21 54 30)(4 43 18 56 22 46 31)(5 44 10 57 23 47 32)(6 45 11 58 24 48 33)(7 37 12 59 25 49 34)(8 38 13 60 26 50 35)(9 39 14 61 27 51 36)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 23)(11 24)(12 25)(13 26)(14 27)(15 19)(16 20)(17 21)(18 22)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 46)(44 47)(45 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 9)(2 8)(3 7)(4 6)(11 18)(12 17)(13 16)(14 15)(19 27)(20 26)(21 25)(22 24)(28 36)(29 35)(30 34)(31 33)(37 42)(38 41)(39 40)(43 45)(46 48)(49 54)(50 53)(51 52)(55 59)(56 58)(60 63)(61 62)
G:=sub<Sym(63)| (1,40,15,62,19,52,28)(2,41,16,63,20,53,29)(3,42,17,55,21,54,30)(4,43,18,56,22,46,31)(5,44,10,57,23,47,32)(6,45,11,58,24,48,33)(7,37,12,59,25,49,34)(8,38,13,60,26,50,35)(9,39,14,61,27,51,36), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,46)(44,47)(45,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(11,18)(12,17)(13,16)(14,15)(19,27)(20,26)(21,25)(22,24)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,48)(49,54)(50,53)(51,52)(55,59)(56,58)(60,63)(61,62)>;
G:=Group( (1,40,15,62,19,52,28)(2,41,16,63,20,53,29)(3,42,17,55,21,54,30)(4,43,18,56,22,46,31)(5,44,10,57,23,47,32)(6,45,11,58,24,48,33)(7,37,12,59,25,49,34)(8,38,13,60,26,50,35)(9,39,14,61,27,51,36), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,46)(44,47)(45,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(11,18)(12,17)(13,16)(14,15)(19,27)(20,26)(21,25)(22,24)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,48)(49,54)(50,53)(51,52)(55,59)(56,58)(60,63)(61,62) );
G=PermutationGroup([[(1,40,15,62,19,52,28),(2,41,16,63,20,53,29),(3,42,17,55,21,54,30),(4,43,18,56,22,46,31),(5,44,10,57,23,47,32),(6,45,11,58,24,48,33),(7,37,12,59,25,49,34),(8,38,13,60,26,50,35),(9,39,14,61,27,51,36)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,23),(11,24),(12,25),(13,26),(14,27),(15,19),(16,20),(17,21),(18,22),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,46),(44,47),(45,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,9),(2,8),(3,7),(4,6),(11,18),(12,17),(13,16),(14,15),(19,27),(20,26),(21,25),(22,24),(28,36),(29,35),(30,34),(31,33),(37,42),(38,41),(39,40),(43,45),(46,48),(49,54),(50,53),(51,52),(55,59),(56,58),(60,63),(61,62)]])
Matrix representation of D7×D9 ►in GL4(𝔽127) generated by
90 | 1 | 0 | 0 |
28 | 61 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
61 | 24 | 0 | 0 |
99 | 66 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 22 |
0 | 0 | 105 | 31 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 105 | 31 |
0 | 0 | 9 | 22 |
G:=sub<GL(4,GF(127))| [90,28,0,0,1,61,0,0,0,0,1,0,0,0,0,1],[61,99,0,0,24,66,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,9,105,0,0,22,31],[1,0,0,0,0,1,0,0,0,0,105,9,0,0,31,22] >;
D7×D9 in GAP, Magma, Sage, TeX
D_7\times D_9
% in TeX
G:=Group("D7xD9");
// GroupNames label
G:=SmallGroup(252,8);
// by ID
G=gap.SmallGroup(252,8);
# by ID
G:=PCGroup([5,-2,-2,-3,-7,-3,697,642,1443,2109]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D7×D9 in TeX
Character table of D7×D9 in TeX