Copied to
clipboard

G = D7×D9order 252 = 22·32·7

Direct product of D7 and D9

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×D9, D63⋊C2, C91D14, C71D18, C63⋊C22, C21.D6, (C7×D9)⋊C2, (C9×D7)⋊C2, C3.(S3×D7), (C3×D7).S3, SmallGroup(252,8)

Series: Derived Chief Lower central Upper central

C1C63 — D7×D9
C1C3C21C63C9×D7 — D7×D9
C63 — D7×D9
C1

Generators and relations for D7×D9
 G = < a,b,c,d | a7=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

7C2
9C2
63C2
63C22
3S3
7C6
21S3
9C14
9D7
21D6
7C18
7D9
9D14
3S3×C7
3D21
7D18
3S3×D7

Character table of D7×D9

 class 12A2B2C367A7B7C9A9B9C14A14B14C18A18B18C21A21B21C63A63B63C63D63E63F63G63H63I
 size 17963214222222181818141414444444444444
ρ1111111111111111111111111111111    trivial
ρ21-11-11-1111111111-1-1-1111111111111    linear of order 2
ρ311-1-111111111-1-1-1111111111111111    linear of order 2
ρ41-1-111-1111111-1-1-1-1-1-1111111111111    linear of order 2
ρ5220022222-1-1-1000-1-1-1222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-2002-2222-1-1-1000111222-1-1-1-1-1-1-1-1-1    orthogonal lifted from D6
ρ720-2020ζ7572ζ7473ζ76722274737572767000ζ7572ζ767ζ7473ζ7572ζ7572ζ7473ζ7473ζ7473ζ767ζ767ζ767ζ7572    orthogonal lifted from D14
ρ820-2020ζ7473ζ767ζ757222276774737572000ζ7473ζ7572ζ767ζ7473ζ7473ζ767ζ767ζ767ζ7572ζ7572ζ7572ζ7473    orthogonal lifted from D14
ρ920-2020ζ767ζ7572ζ747322275727677473000ζ767ζ7473ζ7572ζ767ζ767ζ7572ζ7572ζ7572ζ7473ζ7473ζ7473ζ767    orthogonal lifted from D14
ρ10202020ζ767ζ7572ζ7473222ζ7572ζ767ζ7473000ζ767ζ7473ζ7572ζ767ζ767ζ7572ζ7572ζ7572ζ7473ζ7473ζ7473ζ767    orthogonal lifted from D7
ρ11202020ζ7572ζ7473ζ767222ζ7473ζ7572ζ767000ζ7572ζ767ζ7473ζ7572ζ7572ζ7473ζ7473ζ7473ζ767ζ767ζ767ζ7572    orthogonal lifted from D7
ρ12202020ζ7473ζ767ζ7572222ζ767ζ7473ζ7572000ζ7473ζ7572ζ767ζ7473ζ7473ζ767ζ767ζ767ζ7572ζ7572ζ7572ζ7473    orthogonal lifted from D7
ρ132200-1-1222ζ989ζ9792ζ9594000ζ989ζ9792ζ9594-1-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ142200-1-1222ζ9792ζ9594ζ989000ζ9792ζ9594ζ989-1-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ152-200-11222ζ989ζ9792ζ959400098997929594-1-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D18
ρ162200-1-1222ζ9594ζ989ζ9792000ζ9594ζ989ζ9792-1-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ172-200-11222ζ9792ζ9594ζ98900097929594989-1-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D18
ρ182-200-11222ζ9594ζ989ζ979200095949899792-1-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D18
ρ1940004076+2ζ775+2ζ7274+2ζ73-2-2-200000076+2ζ774+2ζ7375+2ζ72767767757275727572747374737473767    orthogonal lifted from S3×D7
ρ2040004075+2ζ7274+2ζ7376+2ζ7-2-2-200000075+2ζ7276+2ζ774+2ζ73757275727473747374737677677677572    orthogonal lifted from S3×D7
ρ2140004074+2ζ7376+2ζ775+2ζ72-2-2-200000074+2ζ7375+2ζ7276+2ζ7747374737677677677572757275727473    orthogonal lifted from S3×D7
ρ224000-2076+2ζ775+2ζ7274+2ζ7397+2ζ9295+2ζ9498+2ζ900000076774737572ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7698ζ79ζ769ζ7ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7598ζ729ζ759ζ72ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7498ζ739ζ749ζ73ζ97ζ7697ζ792ζ7692ζ7    orthogonal faithful
ρ234000-2075+2ζ7274+2ζ7376+2ζ795+2ζ9498+2ζ997+2ζ9200000075727677473ζ98ζ7598ζ729ζ759ζ72ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7498ζ739ζ749ζ73ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7698ζ79ζ769ζ7ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7595ζ7294ζ7594ζ72    orthogonal faithful
ρ244000-2075+2ζ7274+2ζ7376+2ζ798+2ζ997+2ζ9295+2ζ9400000075727677473ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7498ζ739ζ749ζ73ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7698ζ79ζ769ζ7ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7598ζ729ζ759ζ72    orthogonal faithful
ρ254000-2076+2ζ775+2ζ7274+2ζ7398+2ζ997+2ζ9295+2ζ9400000076774737572ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7598ζ729ζ759ζ72ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7498ζ739ζ749ζ73ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7698ζ79ζ769ζ7    orthogonal faithful
ρ264000-2074+2ζ7376+2ζ775+2ζ7297+2ζ9295+2ζ9498+2ζ900000074737572767ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7498ζ739ζ749ζ73ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7698ζ79ζ769ζ7ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7598ζ729ζ759ζ72ζ97ζ7497ζ7392ζ7492ζ73    orthogonal faithful
ρ274000-2076+2ζ775+2ζ7274+2ζ7395+2ζ9498+2ζ997+2ζ9200000076774737572ζ98ζ7698ζ79ζ769ζ7ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7598ζ729ζ759ζ72ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7498ζ739ζ749ζ73ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7695ζ794ζ7694ζ7    orthogonal faithful
ρ284000-2074+2ζ7376+2ζ775+2ζ7298+2ζ997+2ζ9295+2ζ9400000074737572767ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7698ζ79ζ769ζ7ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7598ζ729ζ759ζ72ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7498ζ739ζ749ζ73    orthogonal faithful
ρ294000-2074+2ζ7376+2ζ775+2ζ7295+2ζ9498+2ζ997+2ζ9200000074737572767ζ98ζ7498ζ739ζ749ζ73ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7698ζ79ζ769ζ7ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7598ζ729ζ759ζ72ζ97ζ7597ζ7292ζ7592ζ72ζ95ζ7495ζ7394ζ7494ζ73    orthogonal faithful
ρ304000-2075+2ζ7274+2ζ7376+2ζ797+2ζ9295+2ζ9498+2ζ900000075727677473ζ95ζ7595ζ7294ζ7594ζ72ζ98ζ7598ζ729ζ759ζ72ζ97ζ7497ζ7392ζ7492ζ73ζ95ζ7495ζ7394ζ7494ζ73ζ98ζ7498ζ739ζ749ζ73ζ97ζ7697ζ792ζ7692ζ7ζ95ζ7695ζ794ζ7694ζ7ζ98ζ7698ζ79ζ769ζ7ζ97ζ7597ζ7292ζ7592ζ72    orthogonal faithful

Smallest permutation representation of D7×D9
On 63 points
Generators in S63
(1 40 15 62 19 52 28)(2 41 16 63 20 53 29)(3 42 17 55 21 54 30)(4 43 18 56 22 46 31)(5 44 10 57 23 47 32)(6 45 11 58 24 48 33)(7 37 12 59 25 49 34)(8 38 13 60 26 50 35)(9 39 14 61 27 51 36)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 23)(11 24)(12 25)(13 26)(14 27)(15 19)(16 20)(17 21)(18 22)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 46)(44 47)(45 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 9)(2 8)(3 7)(4 6)(11 18)(12 17)(13 16)(14 15)(19 27)(20 26)(21 25)(22 24)(28 36)(29 35)(30 34)(31 33)(37 42)(38 41)(39 40)(43 45)(46 48)(49 54)(50 53)(51 52)(55 59)(56 58)(60 63)(61 62)

G:=sub<Sym(63)| (1,40,15,62,19,52,28)(2,41,16,63,20,53,29)(3,42,17,55,21,54,30)(4,43,18,56,22,46,31)(5,44,10,57,23,47,32)(6,45,11,58,24,48,33)(7,37,12,59,25,49,34)(8,38,13,60,26,50,35)(9,39,14,61,27,51,36), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,46)(44,47)(45,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(11,18)(12,17)(13,16)(14,15)(19,27)(20,26)(21,25)(22,24)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,48)(49,54)(50,53)(51,52)(55,59)(56,58)(60,63)(61,62)>;

G:=Group( (1,40,15,62,19,52,28)(2,41,16,63,20,53,29)(3,42,17,55,21,54,30)(4,43,18,56,22,46,31)(5,44,10,57,23,47,32)(6,45,11,58,24,48,33)(7,37,12,59,25,49,34)(8,38,13,60,26,50,35)(9,39,14,61,27,51,36), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,46)(44,47)(45,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(11,18)(12,17)(13,16)(14,15)(19,27)(20,26)(21,25)(22,24)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,48)(49,54)(50,53)(51,52)(55,59)(56,58)(60,63)(61,62) );

G=PermutationGroup([[(1,40,15,62,19,52,28),(2,41,16,63,20,53,29),(3,42,17,55,21,54,30),(4,43,18,56,22,46,31),(5,44,10,57,23,47,32),(6,45,11,58,24,48,33),(7,37,12,59,25,49,34),(8,38,13,60,26,50,35),(9,39,14,61,27,51,36)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,23),(11,24),(12,25),(13,26),(14,27),(15,19),(16,20),(17,21),(18,22),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,46),(44,47),(45,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,9),(2,8),(3,7),(4,6),(11,18),(12,17),(13,16),(14,15),(19,27),(20,26),(21,25),(22,24),(28,36),(29,35),(30,34),(31,33),(37,42),(38,41),(39,40),(43,45),(46,48),(49,54),(50,53),(51,52),(55,59),(56,58),(60,63),(61,62)]])

Matrix representation of D7×D9 in GL4(𝔽127) generated by

90100
286100
0010
0001
,
612400
996600
0010
0001
,
1000
0100
00922
0010531
,
1000
0100
0010531
00922
G:=sub<GL(4,GF(127))| [90,28,0,0,1,61,0,0,0,0,1,0,0,0,0,1],[61,99,0,0,24,66,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,9,105,0,0,22,31],[1,0,0,0,0,1,0,0,0,0,105,9,0,0,31,22] >;

D7×D9 in GAP, Magma, Sage, TeX

D_7\times D_9
% in TeX

G:=Group("D7xD9");
// GroupNames label

G:=SmallGroup(252,8);
// by ID

G=gap.SmallGroup(252,8);
# by ID

G:=PCGroup([5,-2,-2,-3,-7,-3,697,642,1443,2109]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D7×D9 in TeX
Character table of D7×D9 in TeX

׿
×
𝔽