direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: S3×C43, C3⋊C86, C129⋊3C2, SmallGroup(258,3)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C43 |
Generators and relations for S3×C43
G = < a,b,c | a43=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43)(44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86)(87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129)
(1 112 51)(2 113 52)(3 114 53)(4 115 54)(5 116 55)(6 117 56)(7 118 57)(8 119 58)(9 120 59)(10 121 60)(11 122 61)(12 123 62)(13 124 63)(14 125 64)(15 126 65)(16 127 66)(17 128 67)(18 129 68)(19 87 69)(20 88 70)(21 89 71)(22 90 72)(23 91 73)(24 92 74)(25 93 75)(26 94 76)(27 95 77)(28 96 78)(29 97 79)(30 98 80)(31 99 81)(32 100 82)(33 101 83)(34 102 84)(35 103 85)(36 104 86)(37 105 44)(38 106 45)(39 107 46)(40 108 47)(41 109 48)(42 110 49)(43 111 50)
(44 105)(45 106)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 121)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 87)(70 88)(71 89)(72 90)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)
G:=sub<Sym(129)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,112,51)(2,113,52)(3,114,53)(4,115,54)(5,116,55)(6,117,56)(7,118,57)(8,119,58)(9,120,59)(10,121,60)(11,122,61)(12,123,62)(13,124,63)(14,125,64)(15,126,65)(16,127,66)(17,128,67)(18,129,68)(19,87,69)(20,88,70)(21,89,71)(22,90,72)(23,91,73)(24,92,74)(25,93,75)(26,94,76)(27,95,77)(28,96,78)(29,97,79)(30,98,80)(31,99,81)(32,100,82)(33,101,83)(34,102,84)(35,103,85)(36,104,86)(37,105,44)(38,106,45)(39,107,46)(40,108,47)(41,109,48)(42,110,49)(43,111,50), (44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,87)(70,88)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,112,51)(2,113,52)(3,114,53)(4,115,54)(5,116,55)(6,117,56)(7,118,57)(8,119,58)(9,120,59)(10,121,60)(11,122,61)(12,123,62)(13,124,63)(14,125,64)(15,126,65)(16,127,66)(17,128,67)(18,129,68)(19,87,69)(20,88,70)(21,89,71)(22,90,72)(23,91,73)(24,92,74)(25,93,75)(26,94,76)(27,95,77)(28,96,78)(29,97,79)(30,98,80)(31,99,81)(32,100,82)(33,101,83)(34,102,84)(35,103,85)(36,104,86)(37,105,44)(38,106,45)(39,107,46)(40,108,47)(41,109,48)(42,110,49)(43,111,50), (44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,87)(70,88)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43),(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86),(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129)], [(1,112,51),(2,113,52),(3,114,53),(4,115,54),(5,116,55),(6,117,56),(7,118,57),(8,119,58),(9,120,59),(10,121,60),(11,122,61),(12,123,62),(13,124,63),(14,125,64),(15,126,65),(16,127,66),(17,128,67),(18,129,68),(19,87,69),(20,88,70),(21,89,71),(22,90,72),(23,91,73),(24,92,74),(25,93,75),(26,94,76),(27,95,77),(28,96,78),(29,97,79),(30,98,80),(31,99,81),(32,100,82),(33,101,83),(34,102,84),(35,103,85),(36,104,86),(37,105,44),(38,106,45),(39,107,46),(40,108,47),(41,109,48),(42,110,49),(43,111,50)], [(44,105),(45,106),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,121),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,87),(70,88),(71,89),(72,90),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104)]])
129 conjugacy classes
class | 1 | 2 | 3 | 43A | ··· | 43AP | 86A | ··· | 86AP | 129A | ··· | 129AP |
order | 1 | 2 | 3 | 43 | ··· | 43 | 86 | ··· | 86 | 129 | ··· | 129 |
size | 1 | 3 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 |
129 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||
image | C1 | C2 | C43 | C86 | S3 | S3×C43 |
kernel | S3×C43 | C129 | S3 | C3 | C43 | C1 |
# reps | 1 | 1 | 42 | 42 | 1 | 42 |
Matrix representation of S3×C43 ►in GL2(𝔽1033) generated by
335 | 0 |
0 | 335 |
1032 | 1032 |
1 | 0 |
1 | 0 |
1032 | 1032 |
G:=sub<GL(2,GF(1033))| [335,0,0,335],[1032,1,1032,0],[1,1032,0,1032] >;
S3×C43 in GAP, Magma, Sage, TeX
S_3\times C_{43}
% in TeX
G:=Group("S3xC43");
// GroupNames label
G:=SmallGroup(258,3);
// by ID
G=gap.SmallGroup(258,3);
# by ID
G:=PCGroup([3,-2,-43,-3,1550]);
// Polycyclic
G:=Group<a,b,c|a^43=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export