Copied to
clipboard

G = D5×C26order 260 = 22·5·13

Direct product of C26 and D5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×C26, C10⋊C26, C1303C2, C654C22, C5⋊(C2×C26), SmallGroup(260,13)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C26
C1C5C65D5×C13 — D5×C26
C5 — D5×C26
C1C26

Generators and relations for D5×C26
 G = < a,b,c | a26=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C2
5C22
5C26
5C26
5C2×C26

Smallest permutation representation of D5×C26
On 130 points
Generators in S130
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)
(1 93 45 117 78)(2 94 46 118 53)(3 95 47 119 54)(4 96 48 120 55)(5 97 49 121 56)(6 98 50 122 57)(7 99 51 123 58)(8 100 52 124 59)(9 101 27 125 60)(10 102 28 126 61)(11 103 29 127 62)(12 104 30 128 63)(13 79 31 129 64)(14 80 32 130 65)(15 81 33 105 66)(16 82 34 106 67)(17 83 35 107 68)(18 84 36 108 69)(19 85 37 109 70)(20 86 38 110 71)(21 87 39 111 72)(22 88 40 112 73)(23 89 41 113 74)(24 90 42 114 75)(25 91 43 115 76)(26 92 44 116 77)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 76)(13 77)(14 78)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(79 116)(80 117)(81 118)(82 119)(83 120)(84 121)(85 122)(86 123)(87 124)(88 125)(89 126)(90 127)(91 128)(92 129)(93 130)(94 105)(95 106)(96 107)(97 108)(98 109)(99 110)(100 111)(101 112)(102 113)(103 114)(104 115)

G:=sub<Sym(130)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130), (1,93,45,117,78)(2,94,46,118,53)(3,95,47,119,54)(4,96,48,120,55)(5,97,49,121,56)(6,98,50,122,57)(7,99,51,123,58)(8,100,52,124,59)(9,101,27,125,60)(10,102,28,126,61)(11,103,29,127,62)(12,104,30,128,63)(13,79,31,129,64)(14,80,32,130,65)(15,81,33,105,66)(16,82,34,106,67)(17,83,35,107,68)(18,84,36,108,69)(19,85,37,109,70)(20,86,38,110,71)(21,87,39,111,72)(22,88,40,112,73)(23,89,41,113,74)(24,90,42,114,75)(25,91,43,115,76)(26,92,44,116,77), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(79,116)(80,117)(81,118)(82,119)(83,120)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,111)(101,112)(102,113)(103,114)(104,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130), (1,93,45,117,78)(2,94,46,118,53)(3,95,47,119,54)(4,96,48,120,55)(5,97,49,121,56)(6,98,50,122,57)(7,99,51,123,58)(8,100,52,124,59)(9,101,27,125,60)(10,102,28,126,61)(11,103,29,127,62)(12,104,30,128,63)(13,79,31,129,64)(14,80,32,130,65)(15,81,33,105,66)(16,82,34,106,67)(17,83,35,107,68)(18,84,36,108,69)(19,85,37,109,70)(20,86,38,110,71)(21,87,39,111,72)(22,88,40,112,73)(23,89,41,113,74)(24,90,42,114,75)(25,91,43,115,76)(26,92,44,116,77), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(79,116)(80,117)(81,118)(82,119)(83,120)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,105)(95,106)(96,107)(97,108)(98,109)(99,110)(100,111)(101,112)(102,113)(103,114)(104,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)], [(1,93,45,117,78),(2,94,46,118,53),(3,95,47,119,54),(4,96,48,120,55),(5,97,49,121,56),(6,98,50,122,57),(7,99,51,123,58),(8,100,52,124,59),(9,101,27,125,60),(10,102,28,126,61),(11,103,29,127,62),(12,104,30,128,63),(13,79,31,129,64),(14,80,32,130,65),(15,81,33,105,66),(16,82,34,106,67),(17,83,35,107,68),(18,84,36,108,69),(19,85,37,109,70),(20,86,38,110,71),(21,87,39,111,72),(22,88,40,112,73),(23,89,41,113,74),(24,90,42,114,75),(25,91,43,115,76),(26,92,44,116,77)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,76),(13,77),(14,78),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(79,116),(80,117),(81,118),(82,119),(83,120),(84,121),(85,122),(86,123),(87,124),(88,125),(89,126),(90,127),(91,128),(92,129),(93,130),(94,105),(95,106),(96,107),(97,108),(98,109),(99,110),(100,111),(101,112),(102,113),(103,114),(104,115)]])

104 conjugacy classes

class 1 2A2B2C5A5B10A10B13A···13L26A···26L26M···26AJ65A···65X130A···130X
order122255101013···1326···2626···2665···65130···130
size115522221···11···15···52···22···2

104 irreducible representations

dim1111112222
type+++++
imageC1C2C2C13C26C26D5D10D5×C13D5×C26
kernelD5×C26D5×C13C130D10D5C10C26C13C2C1
# reps121122412222424

Matrix representation of D5×C26 in GL3(𝔽131) generated by

13000
0390
0039
,
100
01301
011812
,
100
01300
01181
G:=sub<GL(3,GF(131))| [130,0,0,0,39,0,0,0,39],[1,0,0,0,130,118,0,1,12],[1,0,0,0,130,118,0,0,1] >;

D5×C26 in GAP, Magma, Sage, TeX

D_5\times C_{26}
% in TeX

G:=Group("D5xC26");
// GroupNames label

G:=SmallGroup(260,13);
// by ID

G=gap.SmallGroup(260,13);
# by ID

G:=PCGroup([4,-2,-2,-13,-5,3331]);
// Polycyclic

G:=Group<a,b,c|a^26=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C26 in TeX

׿
×
𝔽