Copied to
clipboard

G = C4×D35order 280 = 23·5·7

Direct product of C4 and D35

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×D35, C282D5, C202D7, C1402C2, C2.1D70, D70.2C2, C10.9D14, C14.9D10, Dic355C2, C70.9C22, C53(C4×D7), C72(C4×D5), C357(C2×C4), SmallGroup(280,25)

Series: Derived Chief Lower central Upper central

C1C35 — C4×D35
C1C7C35C70D70 — C4×D35
C35 — C4×D35
C1C4

Generators and relations for C4×D35
 G = < a,b,c | a4=b35=c2=1, ab=ba, ac=ca, cbc=b-1 >

35C2
35C2
35C4
35C22
7D5
7D5
5D7
5D7
35C2×C4
7Dic5
7D10
5D14
5Dic7
7C4×D5
5C4×D7

Smallest permutation representation of C4×D35
On 140 points
Generators in S140
(1 119 48 102)(2 120 49 103)(3 121 50 104)(4 122 51 105)(5 123 52 71)(6 124 53 72)(7 125 54 73)(8 126 55 74)(9 127 56 75)(10 128 57 76)(11 129 58 77)(12 130 59 78)(13 131 60 79)(14 132 61 80)(15 133 62 81)(16 134 63 82)(17 135 64 83)(18 136 65 84)(19 137 66 85)(20 138 67 86)(21 139 68 87)(22 140 69 88)(23 106 70 89)(24 107 36 90)(25 108 37 91)(26 109 38 92)(27 110 39 93)(28 111 40 94)(29 112 41 95)(30 113 42 96)(31 114 43 97)(32 115 44 98)(33 116 45 99)(34 117 46 100)(35 118 47 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 40)(9 39)(10 38)(11 37)(12 36)(13 70)(14 69)(15 68)(16 67)(17 66)(18 65)(19 64)(20 63)(21 62)(22 61)(23 60)(24 59)(25 58)(26 57)(27 56)(28 55)(29 54)(30 53)(31 52)(32 51)(33 50)(34 49)(35 48)(71 114)(72 113)(73 112)(74 111)(75 110)(76 109)(77 108)(78 107)(79 106)(80 140)(81 139)(82 138)(83 137)(84 136)(85 135)(86 134)(87 133)(88 132)(89 131)(90 130)(91 129)(92 128)(93 127)(94 126)(95 125)(96 124)(97 123)(98 122)(99 121)(100 120)(101 119)(102 118)(103 117)(104 116)(105 115)

G:=sub<Sym(140)| (1,119,48,102)(2,120,49,103)(3,121,50,104)(4,122,51,105)(5,123,52,71)(6,124,53,72)(7,125,54,73)(8,126,55,74)(9,127,56,75)(10,128,57,76)(11,129,58,77)(12,130,59,78)(13,131,60,79)(14,132,61,80)(15,133,62,81)(16,134,63,82)(17,135,64,83)(18,136,65,84)(19,137,66,85)(20,138,67,86)(21,139,68,87)(22,140,69,88)(23,106,70,89)(24,107,36,90)(25,108,37,91)(26,109,38,92)(27,110,39,93)(28,111,40,94)(29,112,41,95)(30,113,42,96)(31,114,43,97)(32,115,44,98)(33,116,45,99)(34,117,46,100)(35,118,47,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,70)(14,69)(15,68)(16,67)(17,66)(18,65)(19,64)(20,63)(21,62)(22,61)(23,60)(24,59)(25,58)(26,57)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(71,114)(72,113)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,140)(81,139)(82,138)(83,137)(84,136)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,126)(95,125)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)>;

G:=Group( (1,119,48,102)(2,120,49,103)(3,121,50,104)(4,122,51,105)(5,123,52,71)(6,124,53,72)(7,125,54,73)(8,126,55,74)(9,127,56,75)(10,128,57,76)(11,129,58,77)(12,130,59,78)(13,131,60,79)(14,132,61,80)(15,133,62,81)(16,134,63,82)(17,135,64,83)(18,136,65,84)(19,137,66,85)(20,138,67,86)(21,139,68,87)(22,140,69,88)(23,106,70,89)(24,107,36,90)(25,108,37,91)(26,109,38,92)(27,110,39,93)(28,111,40,94)(29,112,41,95)(30,113,42,96)(31,114,43,97)(32,115,44,98)(33,116,45,99)(34,117,46,100)(35,118,47,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,70)(14,69)(15,68)(16,67)(17,66)(18,65)(19,64)(20,63)(21,62)(22,61)(23,60)(24,59)(25,58)(26,57)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(71,114)(72,113)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,140)(81,139)(82,138)(83,137)(84,136)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,126)(95,125)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115) );

G=PermutationGroup([[(1,119,48,102),(2,120,49,103),(3,121,50,104),(4,122,51,105),(5,123,52,71),(6,124,53,72),(7,125,54,73),(8,126,55,74),(9,127,56,75),(10,128,57,76),(11,129,58,77),(12,130,59,78),(13,131,60,79),(14,132,61,80),(15,133,62,81),(16,134,63,82),(17,135,64,83),(18,136,65,84),(19,137,66,85),(20,138,67,86),(21,139,68,87),(22,140,69,88),(23,106,70,89),(24,107,36,90),(25,108,37,91),(26,109,38,92),(27,110,39,93),(28,111,40,94),(29,112,41,95),(30,113,42,96),(31,114,43,97),(32,115,44,98),(33,116,45,99),(34,117,46,100),(35,118,47,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,40),(9,39),(10,38),(11,37),(12,36),(13,70),(14,69),(15,68),(16,67),(17,66),(18,65),(19,64),(20,63),(21,62),(22,61),(23,60),(24,59),(25,58),(26,57),(27,56),(28,55),(29,54),(30,53),(31,52),(32,51),(33,50),(34,49),(35,48),(71,114),(72,113),(73,112),(74,111),(75,110),(76,109),(77,108),(78,107),(79,106),(80,140),(81,139),(82,138),(83,137),(84,136),(85,135),(86,134),(87,133),(88,132),(89,131),(90,130),(91,129),(92,128),(93,127),(94,126),(95,125),(96,124),(97,123),(98,122),(99,121),(100,120),(101,119),(102,118),(103,117),(104,116),(105,115)]])

76 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B7A7B7C10A10B14A14B14C20A20B20C20D28A···28F35A···35L70A···70L140A···140X
order122244445577710101414142020202028···2835···3570···70140···140
size113535113535222222222222222···22···22···22···2

76 irreducible representations

dim11111222222222
type++++++++++
imageC1C2C2C2C4D5D7D10D14C4×D5C4×D7D35D70C4×D35
kernelC4×D35Dic35C140D70D35C28C20C14C10C7C5C4C2C1
# reps11114232346121224

Matrix representation of C4×D35 in GL3(𝔽281) generated by

22800
02800
00280
,
100
0243232
0494
,
100
0243232
010438
G:=sub<GL(3,GF(281))| [228,0,0,0,280,0,0,0,280],[1,0,0,0,243,49,0,232,4],[1,0,0,0,243,104,0,232,38] >;

C4×D35 in GAP, Magma, Sage, TeX

C_4\times D_{35}
% in TeX

G:=Group("C4xD35");
// GroupNames label

G:=SmallGroup(280,25);
// by ID

G=gap.SmallGroup(280,25);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,26,643,6004]);
// Polycyclic

G:=Group<a,b,c|a^4=b^35=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4×D35 in TeX

׿
×
𝔽