Copied to
clipboard

G = D5×Dic7order 280 = 23·5·7

Direct product of D5 and Dic7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×Dic7, D10.2D7, C14.2D10, C10.2D14, Dic353C2, C70.2C22, C73(C4×D5), C355(C2×C4), (C7×D5)⋊1C4, C2.2(D5×D7), C52(C2×Dic7), (C5×Dic7)⋊1C2, (D5×C14).1C2, SmallGroup(280,8)

Series: Derived Chief Lower central Upper central

C1C35 — D5×Dic7
C1C7C35C70C5×Dic7 — D5×Dic7
C35 — D5×Dic7
C1C2

Generators and relations for D5×Dic7
 G = < a,b,c,d | a5=b2=c14=1, d2=c7, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

5C2
5C2
5C22
7C4
35C4
5C14
5C14
35C2×C4
7C20
7Dic5
5Dic7
5C2×C14
7C4×D5
5C2×Dic7

Smallest permutation representation of D5×Dic7
On 140 points
Generators in S140
(1 62 36 135 98)(2 63 37 136 85)(3 64 38 137 86)(4 65 39 138 87)(5 66 40 139 88)(6 67 41 140 89)(7 68 42 127 90)(8 69 29 128 91)(9 70 30 129 92)(10 57 31 130 93)(11 58 32 131 94)(12 59 33 132 95)(13 60 34 133 96)(14 61 35 134 97)(15 104 121 51 71)(16 105 122 52 72)(17 106 123 53 73)(18 107 124 54 74)(19 108 125 55 75)(20 109 126 56 76)(21 110 113 43 77)(22 111 114 44 78)(23 112 115 45 79)(24 99 116 46 80)(25 100 117 47 81)(26 101 118 48 82)(27 102 119 49 83)(28 103 120 50 84)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 85)(10 86)(11 87)(12 88)(13 89)(14 90)(15 111)(16 112)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 105)(24 106)(25 107)(26 108)(27 109)(28 110)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(57 137)(58 138)(59 139)(60 140)(61 127)(62 128)(63 129)(64 130)(65 131)(66 132)(67 133)(68 134)(69 135)(70 136)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 105 8 112)(2 104 9 111)(3 103 10 110)(4 102 11 109)(5 101 12 108)(6 100 13 107)(7 99 14 106)(15 92 22 85)(16 91 23 98)(17 90 24 97)(18 89 25 96)(19 88 26 95)(20 87 27 94)(21 86 28 93)(29 45 36 52)(30 44 37 51)(31 43 38 50)(32 56 39 49)(33 55 40 48)(34 54 41 47)(35 53 42 46)(57 113 64 120)(58 126 65 119)(59 125 66 118)(60 124 67 117)(61 123 68 116)(62 122 69 115)(63 121 70 114)(71 129 78 136)(72 128 79 135)(73 127 80 134)(74 140 81 133)(75 139 82 132)(76 138 83 131)(77 137 84 130)

G:=sub<Sym(140)| (1,62,36,135,98)(2,63,37,136,85)(3,64,38,137,86)(4,65,39,138,87)(5,66,40,139,88)(6,67,41,140,89)(7,68,42,127,90)(8,69,29,128,91)(9,70,30,129,92)(10,57,31,130,93)(11,58,32,131,94)(12,59,33,132,95)(13,60,34,133,96)(14,61,35,134,97)(15,104,121,51,71)(16,105,122,52,72)(17,106,123,53,73)(18,107,124,54,74)(19,108,125,55,75)(20,109,126,56,76)(21,110,113,43,77)(22,111,114,44,78)(23,112,115,45,79)(24,99,116,46,80)(25,100,117,47,81)(26,101,118,48,82)(27,102,119,49,83)(28,103,120,50,84), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,111)(16,112)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,137)(58,138)(59,139)(60,140)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,105,8,112)(2,104,9,111)(3,103,10,110)(4,102,11,109)(5,101,12,108)(6,100,13,107)(7,99,14,106)(15,92,22,85)(16,91,23,98)(17,90,24,97)(18,89,25,96)(19,88,26,95)(20,87,27,94)(21,86,28,93)(29,45,36,52)(30,44,37,51)(31,43,38,50)(32,56,39,49)(33,55,40,48)(34,54,41,47)(35,53,42,46)(57,113,64,120)(58,126,65,119)(59,125,66,118)(60,124,67,117)(61,123,68,116)(62,122,69,115)(63,121,70,114)(71,129,78,136)(72,128,79,135)(73,127,80,134)(74,140,81,133)(75,139,82,132)(76,138,83,131)(77,137,84,130)>;

G:=Group( (1,62,36,135,98)(2,63,37,136,85)(3,64,38,137,86)(4,65,39,138,87)(5,66,40,139,88)(6,67,41,140,89)(7,68,42,127,90)(8,69,29,128,91)(9,70,30,129,92)(10,57,31,130,93)(11,58,32,131,94)(12,59,33,132,95)(13,60,34,133,96)(14,61,35,134,97)(15,104,121,51,71)(16,105,122,52,72)(17,106,123,53,73)(18,107,124,54,74)(19,108,125,55,75)(20,109,126,56,76)(21,110,113,43,77)(22,111,114,44,78)(23,112,115,45,79)(24,99,116,46,80)(25,100,117,47,81)(26,101,118,48,82)(27,102,119,49,83)(28,103,120,50,84), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,111)(16,112)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,137)(58,138)(59,139)(60,140)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,105,8,112)(2,104,9,111)(3,103,10,110)(4,102,11,109)(5,101,12,108)(6,100,13,107)(7,99,14,106)(15,92,22,85)(16,91,23,98)(17,90,24,97)(18,89,25,96)(19,88,26,95)(20,87,27,94)(21,86,28,93)(29,45,36,52)(30,44,37,51)(31,43,38,50)(32,56,39,49)(33,55,40,48)(34,54,41,47)(35,53,42,46)(57,113,64,120)(58,126,65,119)(59,125,66,118)(60,124,67,117)(61,123,68,116)(62,122,69,115)(63,121,70,114)(71,129,78,136)(72,128,79,135)(73,127,80,134)(74,140,81,133)(75,139,82,132)(76,138,83,131)(77,137,84,130) );

G=PermutationGroup([[(1,62,36,135,98),(2,63,37,136,85),(3,64,38,137,86),(4,65,39,138,87),(5,66,40,139,88),(6,67,41,140,89),(7,68,42,127,90),(8,69,29,128,91),(9,70,30,129,92),(10,57,31,130,93),(11,58,32,131,94),(12,59,33,132,95),(13,60,34,133,96),(14,61,35,134,97),(15,104,121,51,71),(16,105,122,52,72),(17,106,123,53,73),(18,107,124,54,74),(19,108,125,55,75),(20,109,126,56,76),(21,110,113,43,77),(22,111,114,44,78),(23,112,115,45,79),(24,99,116,46,80),(25,100,117,47,81),(26,101,118,48,82),(27,102,119,49,83),(28,103,120,50,84)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,85),(10,86),(11,87),(12,88),(13,89),(14,90),(15,111),(16,112),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,105),(24,106),(25,107),(26,108),(27,109),(28,110),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(57,137),(58,138),(59,139),(60,140),(61,127),(62,128),(63,129),(64,130),(65,131),(66,132),(67,133),(68,134),(69,135),(70,136),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,105,8,112),(2,104,9,111),(3,103,10,110),(4,102,11,109),(5,101,12,108),(6,100,13,107),(7,99,14,106),(15,92,22,85),(16,91,23,98),(17,90,24,97),(18,89,25,96),(19,88,26,95),(20,87,27,94),(21,86,28,93),(29,45,36,52),(30,44,37,51),(31,43,38,50),(32,56,39,49),(33,55,40,48),(34,54,41,47),(35,53,42,46),(57,113,64,120),(58,126,65,119),(59,125,66,118),(60,124,67,117),(61,123,68,116),(62,122,69,115),(63,121,70,114),(71,129,78,136),(72,128,79,135),(73,127,80,134),(74,140,81,133),(75,139,82,132),(76,138,83,131),(77,137,84,130)]])

40 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B7A7B7C10A10B14A14B14C14D···14I20A20B20C20D35A···35F70A···70F
order1222444455777101014141414···142020202035···3570···70
size1155773535222222222210···10141414144···44···4

40 irreducible representations

dim1111122222244
type+++++++-++-
imageC1C2C2C2C4D5D7D10Dic7D14C4×D5D5×D7D5×Dic7
kernelD5×Dic7C5×Dic7Dic35D5×C14C7×D5Dic7D10C14D5C10C7C2C1
# reps1111423263466

Matrix representation of D5×Dic7 in GL4(𝔽281) generated by

1000
0100
002801
0036244
,
280000
028000
0010
00245280
,
24028000
3627500
002800
000280
,
9313200
9218800
002280
000228
G:=sub<GL(4,GF(281))| [1,0,0,0,0,1,0,0,0,0,280,36,0,0,1,244],[280,0,0,0,0,280,0,0,0,0,1,245,0,0,0,280],[240,36,0,0,280,275,0,0,0,0,280,0,0,0,0,280],[93,92,0,0,132,188,0,0,0,0,228,0,0,0,0,228] >;

D5×Dic7 in GAP, Magma, Sage, TeX

D_5\times {\rm Dic}_7
% in TeX

G:=Group("D5xDic7");
// GroupNames label

G:=SmallGroup(280,8);
// by ID

G=gap.SmallGroup(280,8);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,20,328,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^14=1,d^2=c^7,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×Dic7 in TeX

׿
×
𝔽