metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.46D4, C4.11D12, M4(2)⋊3S3, (C2×C4).1D6, (C22×S3).C4, C2.9(D6⋊C4), (C2×D12).6C2, C3⋊1(C4.D4), C4.Dic3⋊2C2, C22.4(C4×S3), C4.21(C3⋊D4), C6.8(C22⋊C4), (C3×M4(2))⋊7C2, (C2×C12).13C22, (C2×C6).2(C2×C4), SmallGroup(96,30)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.46D4
G = < a,b,c,d | a8=b2=c3=d2=1, bab=a5, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >
Character table of C12.46D4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -1 | -1 | -2i | 2i | 0 | 0 | 1 | 1 | 1 | -i | -i | i | i | complex lifted from C4×S3 |
ρ16 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -1 | -1 | 2i | -2i | 0 | 0 | 1 | 1 | 1 | i | i | -i | -i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | -2 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | -2 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)
(1 11 22)(2 12 23)(3 13 24)(4 14 17)(5 15 18)(6 16 19)(7 9 20)(8 10 21)
(2 6)(3 7)(9 24)(10 21)(11 22)(12 19)(13 20)(14 17)(15 18)(16 23)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23), (1,11,22)(2,12,23)(3,13,24)(4,14,17)(5,15,18)(6,16,19)(7,9,20)(8,10,21), (2,6)(3,7)(9,24)(10,21)(11,22)(12,19)(13,20)(14,17)(15,18)(16,23)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23), (1,11,22)(2,12,23)(3,13,24)(4,14,17)(5,15,18)(6,16,19)(7,9,20)(8,10,21), (2,6)(3,7)(9,24)(10,21)(11,22)(12,19)(13,20)(14,17)(15,18)(16,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23)], [(1,11,22),(2,12,23),(3,13,24),(4,14,17),(5,15,18),(6,16,19),(7,9,20),(8,10,21)], [(2,6),(3,7),(9,24),(10,21),(11,22),(12,19),(13,20),(14,17),(15,18),(16,23)]])
G:=TransitiveGroup(24,105);
C12.46D4 is a maximal subgroup of
S3×C4.D4 D12.3D4 M4(2).21D6 D12.6D4 Q8⋊5D12 C42⋊5D6 C24.19D4 C24.42D4 M4(2).31D6 Q8.8D12 Q8.9D12 D12⋊18D4 M4(2).D6 D12.39D4 M4(2).15D6 C36.48D4 C12.D12 C12.70D12 C12.19D12 C20.5D12 C60.29D4 M4(2)⋊D15 Dic5.D12
C12.46D4 is a maximal quotient of
C42.D6 (C22×S3)⋊C8 C4.Dic12 C4.D24 M4(2)⋊Dic3 C36.48D4 C12.D12 C12.70D12 C12.19D12 C20.5D12 C60.29D4 M4(2)⋊D15 Dic5.D12
Matrix representation of C12.46D4 ►in GL6(𝔽73)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 11 | 68 | 21 | 3 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 43 | 23 | 7 | 5 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 17 | 52 | 0 | 72 |
36 | 28 | 0 | 0 | 0 | 0 |
28 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 68 | 21 | 3 |
0 | 0 | 22 | 7 | 48 | 52 |
G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,11,0,43,0,0,0,68,72,23,0,0,1,21,0,7,0,0,0,3,0,5],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,17,0,0,0,1,0,52,0,0,0,0,72,0,0,0,0,0,0,72],[36,28,0,0,0,0,28,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,11,22,0,0,1,0,68,7,0,0,0,0,21,48,0,0,0,0,3,52] >;
C12.46D4 in GAP, Magma, Sage, TeX
C_{12}._{46}D_4
% in TeX
G:=Group("C12.46D4");
// GroupNames label
G:=SmallGroup(96,30);
// by ID
G=gap.SmallGroup(96,30);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,362,86,297,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^3=d^2=1,b*a*b=a^5,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C12.46D4 in TeX
Character table of C12.46D4 in TeX