extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(D6⋊C4) = C12.78D12 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.1(D6:C4) | 288,205 |
C6.2(D6⋊C4) = C12.70D12 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.2(D6:C4) | 288,207 |
C6.3(D6⋊C4) = C12.71D12 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4- | C6.3(D6:C4) | 288,209 |
C6.4(D6⋊C4) = C6.17D24 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.4(D6:C4) | 288,212 |
C6.5(D6⋊C4) = C12.73D12 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.5(D6:C4) | 288,215 |
C6.6(D6⋊C4) = C12.80D12 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.6(D6:C4) | 288,218 |
C6.7(D6⋊C4) = C62.32D4 | φ: D6⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 24 | 4 | C6.7(D6:C4) | 288,229 |
C6.8(D6⋊C4) = C42⋊4D9 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | 2 | C6.8(D6:C4) | 288,12 |
C6.9(D6⋊C4) = C22.D36 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | 4 | C6.9(D6:C4) | 288,13 |
C6.10(D6⋊C4) = C18.Q16 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.10(D6:C4) | 288,16 |
C6.11(D6⋊C4) = C18.D8 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.11(D6:C4) | 288,17 |
C6.12(D6⋊C4) = C36.45D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.12(D6:C4) | 288,24 |
C6.13(D6⋊C4) = D18⋊C8 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.13(D6:C4) | 288,27 |
C6.14(D6⋊C4) = C2.D72 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.14(D6:C4) | 288,28 |
C6.15(D6⋊C4) = C4.D36 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | 4- | C6.15(D6:C4) | 288,30 |
C6.16(D6⋊C4) = C36.48D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | 4+ | C6.16(D6:C4) | 288,31 |
C6.17(D6⋊C4) = Dic18⋊C4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | 4 | C6.17(D6:C4) | 288,32 |
C6.18(D6⋊C4) = C18.C42 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.18(D6:C4) | 288,38 |
C6.19(D6⋊C4) = C2×D18⋊C4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.19(D6:C4) | 288,137 |
C6.20(D6⋊C4) = C122⋊C2 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.20(D6:C4) | 288,280 |
C6.21(D6⋊C4) = C62.110D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.21(D6:C4) | 288,281 |
C6.22(D6⋊C4) = C62.113D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.22(D6:C4) | 288,284 |
C6.23(D6⋊C4) = C62.114D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.23(D6:C4) | 288,285 |
C6.24(D6⋊C4) = C6.4Dic12 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.24(D6:C4) | 288,291 |
C6.25(D6⋊C4) = C12.60D12 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.25(D6:C4) | 288,295 |
C6.26(D6⋊C4) = C62.84D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.26(D6:C4) | 288,296 |
C6.27(D6⋊C4) = C12.19D12 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.27(D6:C4) | 288,298 |
C6.28(D6⋊C4) = C12.20D12 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.28(D6:C4) | 288,299 |
C6.29(D6⋊C4) = C62.37D4 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 72 | | C6.29(D6:C4) | 288,300 |
C6.30(D6⋊C4) = C62.15Q8 | φ: D6⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.30(D6:C4) | 288,306 |
C6.31(D6⋊C4) = C12.77D12 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.31(D6:C4) | 288,204 |
C6.32(D6⋊C4) = C12.D12 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.32(D6:C4) | 288,206 |
C6.33(D6⋊C4) = C12.14D12 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.33(D6:C4) | 288,208 |
C6.34(D6⋊C4) = D12⋊3Dic3 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.34(D6:C4) | 288,210 |
C6.35(D6⋊C4) = C6.16D24 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.35(D6:C4) | 288,211 |
C6.36(D6⋊C4) = Dic6⋊Dic3 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.36(D6:C4) | 288,213 |
C6.37(D6⋊C4) = C6.Dic12 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.37(D6:C4) | 288,214 |
C6.38(D6⋊C4) = D12⋊4Dic3 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.38(D6:C4) | 288,216 |
C6.39(D6⋊C4) = D12⋊2Dic3 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.39(D6:C4) | 288,217 |
C6.40(D6⋊C4) = C62.6Q8 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 96 | | C6.40(D6:C4) | 288,227 |
C6.41(D6⋊C4) = C62.31D4 | φ: D6⋊C4/C22×S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.41(D6:C4) | 288,228 |
C6.42(D6⋊C4) = C3×C42⋊4S3 | central extension (φ=1) | 24 | 2 | C6.42(D6:C4) | 288,239 |
C6.43(D6⋊C4) = C3×C23.6D6 | central extension (φ=1) | 24 | 4 | C6.43(D6:C4) | 288,240 |
C6.44(D6⋊C4) = C3×C6.D8 | central extension (φ=1) | 96 | | C6.44(D6:C4) | 288,243 |
C6.45(D6⋊C4) = C3×C6.SD16 | central extension (φ=1) | 96 | | C6.45(D6:C4) | 288,244 |
C6.46(D6⋊C4) = C3×C2.Dic12 | central extension (φ=1) | 96 | | C6.46(D6:C4) | 288,250 |
C6.47(D6⋊C4) = C3×D6⋊C8 | central extension (φ=1) | 96 | | C6.47(D6:C4) | 288,254 |
C6.48(D6⋊C4) = C3×C2.D24 | central extension (φ=1) | 96 | | C6.48(D6:C4) | 288,255 |
C6.49(D6⋊C4) = C3×C12.46D4 | central extension (φ=1) | 48 | 4 | C6.49(D6:C4) | 288,257 |
C6.50(D6⋊C4) = C3×C12.47D4 | central extension (φ=1) | 48 | 4 | C6.50(D6:C4) | 288,258 |
C6.51(D6⋊C4) = C3×D12⋊C4 | central extension (φ=1) | 48 | 4 | C6.51(D6:C4) | 288,259 |
C6.52(D6⋊C4) = C3×C6.C42 | central extension (φ=1) | 96 | | C6.52(D6:C4) | 288,265 |