Extensions 1→N→G→Q→1 with N=C6 and Q=D6⋊C4

Direct product G=N×Q with N=C6 and Q=D6⋊C4
dρLabelID
C6×D6⋊C496C6xD6:C4288,698

Semidirect products G=N:Q with N=C6 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C61(D6⋊C4) = C2×C6.D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C648C6:1(D6:C4)288,611
C62(D6⋊C4) = C2×C6.11D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6:2(D6:C4)288,784
C63(D6⋊C4) = C2×D6⋊Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6:3(D6:C4)288,608

Non-split extensions G=N.Q with N=C6 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C6.1(D6⋊C4) = C12.78D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C648C6.1(D6:C4)288,205
C6.2(D6⋊C4) = C12.70D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C6244+C6.2(D6:C4)288,207
C6.3(D6⋊C4) = C12.71D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C6484-C6.3(D6:C4)288,209
C6.4(D6⋊C4) = C6.17D24φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C648C6.4(D6:C4)288,212
C6.5(D6⋊C4) = C12.73D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C696C6.5(D6:C4)288,215
C6.6(D6⋊C4) = C12.80D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C6484C6.6(D6:C4)288,218
C6.7(D6⋊C4) = C62.32D4φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C6244C6.7(D6:C4)288,229
C6.8(D6⋊C4) = C424D9φ: D6⋊C4/C2×C12C2 ⊆ Aut C6722C6.8(D6:C4)288,12
C6.9(D6⋊C4) = C22.D36φ: D6⋊C4/C2×C12C2 ⊆ Aut C6724C6.9(D6:C4)288,13
C6.10(D6⋊C4) = C18.Q16φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.10(D6:C4)288,16
C6.11(D6⋊C4) = C18.D8φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.11(D6:C4)288,17
C6.12(D6⋊C4) = C36.45D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.12(D6:C4)288,24
C6.13(D6⋊C4) = D18⋊C8φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.13(D6:C4)288,27
C6.14(D6⋊C4) = C2.D72φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.14(D6:C4)288,28
C6.15(D6⋊C4) = C4.D36φ: D6⋊C4/C2×C12C2 ⊆ Aut C61444-C6.15(D6:C4)288,30
C6.16(D6⋊C4) = C36.48D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6724+C6.16(D6:C4)288,31
C6.17(D6⋊C4) = Dic18⋊C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6724C6.17(D6:C4)288,32
C6.18(D6⋊C4) = C18.C42φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.18(D6:C4)288,38
C6.19(D6⋊C4) = C2×D18⋊C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.19(D6:C4)288,137
C6.20(D6⋊C4) = C122⋊C2φ: D6⋊C4/C2×C12C2 ⊆ Aut C672C6.20(D6:C4)288,280
C6.21(D6⋊C4) = C62.110D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C672C6.21(D6:C4)288,281
C6.22(D6⋊C4) = C62.113D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.22(D6:C4)288,284
C6.23(D6⋊C4) = C62.114D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.23(D6:C4)288,285
C6.24(D6⋊C4) = C6.4Dic12φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.24(D6:C4)288,291
C6.25(D6⋊C4) = C12.60D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.25(D6:C4)288,295
C6.26(D6⋊C4) = C62.84D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.26(D6:C4)288,296
C6.27(D6⋊C4) = C12.19D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C672C6.27(D6:C4)288,298
C6.28(D6⋊C4) = C12.20D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C6144C6.28(D6:C4)288,299
C6.29(D6⋊C4) = C62.37D4φ: D6⋊C4/C2×C12C2 ⊆ Aut C672C6.29(D6:C4)288,300
C6.30(D6⋊C4) = C62.15Q8φ: D6⋊C4/C2×C12C2 ⊆ Aut C6288C6.30(D6:C4)288,306
C6.31(D6⋊C4) = C12.77D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.31(D6:C4)288,204
C6.32(D6⋊C4) = C12.D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C6484C6.32(D6:C4)288,206
C6.33(D6⋊C4) = C12.14D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C6484C6.33(D6:C4)288,208
C6.34(D6⋊C4) = D123Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.34(D6:C4)288,210
C6.35(D6⋊C4) = C6.16D24φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.35(D6:C4)288,211
C6.36(D6⋊C4) = Dic6⋊Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.36(D6:C4)288,213
C6.37(D6⋊C4) = C6.Dic12φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.37(D6:C4)288,214
C6.38(D6⋊C4) = D124Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C6244C6.38(D6:C4)288,216
C6.39(D6⋊C4) = D122Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C6484C6.39(D6:C4)288,217
C6.40(D6⋊C4) = C62.6Q8φ: D6⋊C4/C22×S3C2 ⊆ Aut C696C6.40(D6:C4)288,227
C6.41(D6⋊C4) = C62.31D4φ: D6⋊C4/C22×S3C2 ⊆ Aut C6244C6.41(D6:C4)288,228
C6.42(D6⋊C4) = C3×C424S3central extension (φ=1)242C6.42(D6:C4)288,239
C6.43(D6⋊C4) = C3×C23.6D6central extension (φ=1)244C6.43(D6:C4)288,240
C6.44(D6⋊C4) = C3×C6.D8central extension (φ=1)96C6.44(D6:C4)288,243
C6.45(D6⋊C4) = C3×C6.SD16central extension (φ=1)96C6.45(D6:C4)288,244
C6.46(D6⋊C4) = C3×C2.Dic12central extension (φ=1)96C6.46(D6:C4)288,250
C6.47(D6⋊C4) = C3×D6⋊C8central extension (φ=1)96C6.47(D6:C4)288,254
C6.48(D6⋊C4) = C3×C2.D24central extension (φ=1)96C6.48(D6:C4)288,255
C6.49(D6⋊C4) = C3×C12.46D4central extension (φ=1)484C6.49(D6:C4)288,257
C6.50(D6⋊C4) = C3×C12.47D4central extension (φ=1)484C6.50(D6:C4)288,258
C6.51(D6⋊C4) = C3×D12⋊C4central extension (φ=1)484C6.51(D6:C4)288,259
C6.52(D6⋊C4) = C3×C6.C42central extension (φ=1)96C6.52(D6:C4)288,265

׿
×
𝔽