Copied to
clipboard

G = C36⋊D4order 288 = 25·32

3rd semidirect product of C36 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C363D4, Dic91D4, C23.15D18, (C2×D4)⋊6D9, (D4×C18)⋊4C2, (C2×D36)⋊9C2, C41(C9⋊D4), C92(C41D4), (C6×D4).9S3, C2.28(D4×D9), C3.(C123D4), (C4×Dic9)⋊6C2, (C2×C4).53D18, (C2×C12).61D6, C6.103(S3×D4), C18.52(C2×D4), (C22×C6).53D6, C12.14(C3⋊D4), (C2×C18).55C23, (C2×C36).39C22, C22.62(C22×D9), (C22×C18).22C22, (C2×Dic9).41C22, (C22×D9).12C22, (C2×C9⋊D4)⋊7C2, C2.16(C2×C9⋊D4), C6.100(C2×C3⋊D4), (C2×C6).212(C22×S3), SmallGroup(288,150)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C36⋊D4
C1C3C9C18C2×C18C22×D9C2×D36 — C36⋊D4
C9C2×C18 — C36⋊D4
C1C22C2×D4

Generators and relations for C36⋊D4
 G = < a,b,c | a36=b4=c2=1, bab-1=a17, cac=a-1, cbc=b-1 >

Subgroups: 820 in 162 conjugacy classes, 48 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C42, C2×D4, C2×D4, D9, C18, C18, C18, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C41D4, Dic9, C36, D18, C2×C18, C2×C18, C4×Dic3, C2×D12, C2×C3⋊D4, C6×D4, D36, C2×Dic9, C9⋊D4, C2×C36, D4×C9, C22×D9, C22×C18, C123D4, C4×Dic9, C2×D36, C2×C9⋊D4, D4×C18, C36⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C3⋊D4, C22×S3, C41D4, D18, S3×D4, C2×C3⋊D4, C9⋊D4, C22×D9, C123D4, D4×D9, C2×C9⋊D4, C36⋊D4

Smallest permutation representation of C36⋊D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 111 43 96)(2 128 44 77)(3 109 45 94)(4 126 46 75)(5 143 47 92)(6 124 48 73)(7 141 49 90)(8 122 50 107)(9 139 51 88)(10 120 52 105)(11 137 53 86)(12 118 54 103)(13 135 55 84)(14 116 56 101)(15 133 57 82)(16 114 58 99)(17 131 59 80)(18 112 60 97)(19 129 61 78)(20 110 62 95)(21 127 63 76)(22 144 64 93)(23 125 65 74)(24 142 66 91)(25 123 67 108)(26 140 68 89)(27 121 69 106)(28 138 70 87)(29 119 71 104)(30 136 72 85)(31 117 37 102)(32 134 38 83)(33 115 39 100)(34 132 40 81)(35 113 41 98)(36 130 42 79)
(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 20)(37 49)(38 48)(39 47)(40 46)(41 45)(42 44)(50 72)(51 71)(52 70)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(73 134)(74 133)(75 132)(76 131)(77 130)(78 129)(79 128)(80 127)(81 126)(82 125)(83 124)(84 123)(85 122)(86 121)(87 120)(88 119)(89 118)(90 117)(91 116)(92 115)(93 114)(94 113)(95 112)(96 111)(97 110)(98 109)(99 144)(100 143)(101 142)(102 141)(103 140)(104 139)(105 138)(106 137)(107 136)(108 135)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,111,43,96)(2,128,44,77)(3,109,45,94)(4,126,46,75)(5,143,47,92)(6,124,48,73)(7,141,49,90)(8,122,50,107)(9,139,51,88)(10,120,52,105)(11,137,53,86)(12,118,54,103)(13,135,55,84)(14,116,56,101)(15,133,57,82)(16,114,58,99)(17,131,59,80)(18,112,60,97)(19,129,61,78)(20,110,62,95)(21,127,63,76)(22,144,64,93)(23,125,65,74)(24,142,66,91)(25,123,67,108)(26,140,68,89)(27,121,69,106)(28,138,70,87)(29,119,71,104)(30,136,72,85)(31,117,37,102)(32,134,38,83)(33,115,39,100)(34,132,40,81)(35,113,41,98)(36,130,42,79), (2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(85,122)(86,121)(87,120)(88,119)(89,118)(90,117)(91,116)(92,115)(93,114)(94,113)(95,112)(96,111)(97,110)(98,109)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,111,43,96)(2,128,44,77)(3,109,45,94)(4,126,46,75)(5,143,47,92)(6,124,48,73)(7,141,49,90)(8,122,50,107)(9,139,51,88)(10,120,52,105)(11,137,53,86)(12,118,54,103)(13,135,55,84)(14,116,56,101)(15,133,57,82)(16,114,58,99)(17,131,59,80)(18,112,60,97)(19,129,61,78)(20,110,62,95)(21,127,63,76)(22,144,64,93)(23,125,65,74)(24,142,66,91)(25,123,67,108)(26,140,68,89)(27,121,69,106)(28,138,70,87)(29,119,71,104)(30,136,72,85)(31,117,37,102)(32,134,38,83)(33,115,39,100)(34,132,40,81)(35,113,41,98)(36,130,42,79), (2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)(81,126)(82,125)(83,124)(84,123)(85,122)(86,121)(87,120)(88,119)(89,118)(90,117)(91,116)(92,115)(93,114)(94,113)(95,112)(96,111)(97,110)(98,109)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,111,43,96),(2,128,44,77),(3,109,45,94),(4,126,46,75),(5,143,47,92),(6,124,48,73),(7,141,49,90),(8,122,50,107),(9,139,51,88),(10,120,52,105),(11,137,53,86),(12,118,54,103),(13,135,55,84),(14,116,56,101),(15,133,57,82),(16,114,58,99),(17,131,59,80),(18,112,60,97),(19,129,61,78),(20,110,62,95),(21,127,63,76),(22,144,64,93),(23,125,65,74),(24,142,66,91),(25,123,67,108),(26,140,68,89),(27,121,69,106),(28,138,70,87),(29,119,71,104),(30,136,72,85),(31,117,37,102),(32,134,38,83),(33,115,39,100),(34,132,40,81),(35,113,41,98),(36,130,42,79)], [(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,20),(37,49),(38,48),(39,47),(40,46),(41,45),(42,44),(50,72),(51,71),(52,70),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(73,134),(74,133),(75,132),(76,131),(77,130),(78,129),(79,128),(80,127),(81,126),(82,125),(83,124),(84,123),(85,122),(86,121),(87,120),(88,119),(89,118),(90,117),(91,116),(92,115),(93,114),(94,113),(95,112),(96,111),(97,110),(98,109),(99,144),(100,143),(101,142),(102,141),(103,140),(104,139),(105,138),(106,137),(107,136),(108,135)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222234444446666666999121218···1818···1836···36
size1111443636222181818182224444222442···24···44···4

54 irreducible representations

dim11111222222222244
type+++++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D9C3⋊D4D18D18C9⋊D4S3×D4D4×D9
kernelC36⋊D4C4×Dic9C2×D36C2×C9⋊D4D4×C18C6×D4Dic9C36C2×C12C22×C6C2×D4C12C2×C4C23C4C6C2
# reps111411421234361226

Matrix representation of C36⋊D4 in GL4(𝔽37) generated by

171100
26600
00201
00617
,
21300
113500
00360
00036
,
202600
61700
0010
003436
G:=sub<GL(4,GF(37))| [17,26,0,0,11,6,0,0,0,0,20,6,0,0,1,17],[2,11,0,0,13,35,0,0,0,0,36,0,0,0,0,36],[20,6,0,0,26,17,0,0,0,0,1,34,0,0,0,36] >;

C36⋊D4 in GAP, Magma, Sage, TeX

C_{36}\rtimes D_4
% in TeX

G:=Group("C36:D4");
// GroupNames label

G:=SmallGroup(288,150);
// by ID

G=gap.SmallGroup(288,150);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,254,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=c^2=1,b*a*b^-1=a^17,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽