extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xC3:D4) = C2xC3:D24 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.1(C2xC3:D4) | 288,472 |
C6.2(C2xC3:D4) = D12:18D6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.2(C2xC3:D4) | 288,473 |
C6.3(C2xC3:D4) = C2xD12.S3 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.3(C2xC3:D4) | 288,476 |
C6.4(C2xC3:D4) = D12.27D6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C2xC3:D4) | 288,477 |
C6.5(C2xC3:D4) = D12.28D6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.5(C2xC3:D4) | 288,478 |
C6.6(C2xC3:D4) = D12.29D6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | 4- | C6.6(C2xC3:D4) | 288,479 |
C6.7(C2xC3:D4) = C2xC32:5SD16 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.7(C2xC3:D4) | 288,480 |
C6.8(C2xC3:D4) = Dic6.29D6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C2xC3:D4) | 288,481 |
C6.9(C2xC3:D4) = C2xC32:3Q16 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.9(C2xC3:D4) | 288,483 |
C6.10(C2xC3:D4) = D6:7Dic6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.10(C2xC3:D4) | 288,505 |
C6.11(C2xC3:D4) = C12.27D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.11(C2xC3:D4) | 288,508 |
C6.12(C2xC3:D4) = C12.28D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.12(C2xC3:D4) | 288,512 |
C6.13(C2xC3:D4) = Dic3:Dic6 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.13(C2xC3:D4) | 288,514 |
C6.14(C2xC3:D4) = C12.30D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.14(C2xC3:D4) | 288,519 |
C6.15(C2xC3:D4) = C4xC3:D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.15(C2xC3:D4) | 288,551 |
C6.16(C2xC3:D4) = C12:7D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.16(C2xC3:D4) | 288,557 |
C6.17(C2xC3:D4) = C12:D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.17(C2xC3:D4) | 288,559 |
C6.18(C2xC3:D4) = C12:2D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.18(C2xC3:D4) | 288,564 |
C6.19(C2xC3:D4) = C62.57D4 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.19(C2xC3:D4) | 288,610 |
C6.20(C2xC3:D4) = C2xC6.D12 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.20(C2xC3:D4) | 288,611 |
C6.21(C2xC3:D4) = C2xDic3:Dic3 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 96 | | C6.21(C2xC3:D4) | 288,613 |
C6.22(C2xC3:D4) = C62.60D4 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.22(C2xC3:D4) | 288,614 |
C6.23(C2xC3:D4) = C62:5D4 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.23(C2xC3:D4) | 288,625 |
C6.24(C2xC3:D4) = C62:6D4 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 48 | | C6.24(C2xC3:D4) | 288,626 |
C6.25(C2xC3:D4) = C62:8D4 | φ: C2xC3:D4/C2xDic3 → C2 ⊆ Aut C6 | 24 | | C6.25(C2xC3:D4) | 288,629 |
C6.26(C2xC3:D4) = C62.9C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xC3:D4) | 288,487 |
C6.27(C2xC3:D4) = C62.20C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.27(C2xC3:D4) | 288,498 |
C6.28(C2xC3:D4) = D6:Dic6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.28(C2xC3:D4) | 288,499 |
C6.29(C2xC3:D4) = S3xDic3:C4 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.29(C2xC3:D4) | 288,524 |
C6.30(C2xC3:D4) = C62.49C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.30(C2xC3:D4) | 288,527 |
C6.31(C2xC3:D4) = C62.54C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.31(C2xC3:D4) | 288,532 |
C6.32(C2xC3:D4) = C62.55C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.32(C2xC3:D4) | 288,533 |
C6.33(C2xC3:D4) = Dic3:D12 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.33(C2xC3:D4) | 288,534 |
C6.34(C2xC3:D4) = D6:1Dic6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.34(C2xC3:D4) | 288,535 |
C6.35(C2xC3:D4) = C62.58C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.35(C2xC3:D4) | 288,536 |
C6.36(C2xC3:D4) = C62.74C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.36(C2xC3:D4) | 288,552 |
C6.37(C2xC3:D4) = C62.75C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.37(C2xC3:D4) | 288,553 |
C6.38(C2xC3:D4) = D6:D12 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.38(C2xC3:D4) | 288,554 |
C6.39(C2xC3:D4) = C62.77C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.39(C2xC3:D4) | 288,555 |
C6.40(C2xC3:D4) = S3xD6:C4 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.40(C2xC3:D4) | 288,568 |
C6.41(C2xC3:D4) = D6:4D12 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.41(C2xC3:D4) | 288,570 |
C6.42(C2xC3:D4) = S3xD4:S3 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.42(C2xC3:D4) | 288,572 |
C6.43(C2xC3:D4) = Dic6:3D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.43(C2xC3:D4) | 288,573 |
C6.44(C2xC3:D4) = S3xD4.S3 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.44(C2xC3:D4) | 288,576 |
C6.45(C2xC3:D4) = Dic6.19D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.45(C2xC3:D4) | 288,577 |
C6.46(C2xC3:D4) = D12:9D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.46(C2xC3:D4) | 288,580 |
C6.47(C2xC3:D4) = D12.22D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.47(C2xC3:D4) | 288,581 |
C6.48(C2xC3:D4) = D12.7D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.48(C2xC3:D4) | 288,582 |
C6.49(C2xC3:D4) = Dic6.20D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.49(C2xC3:D4) | 288,583 |
C6.50(C2xC3:D4) = S3xQ8:2S3 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.50(C2xC3:D4) | 288,586 |
C6.51(C2xC3:D4) = D12:6D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.51(C2xC3:D4) | 288,587 |
C6.52(C2xC3:D4) = S3xC3:Q16 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | 8- | C6.52(C2xC3:D4) | 288,590 |
C6.53(C2xC3:D4) = D12.11D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | 8- | C6.53(C2xC3:D4) | 288,591 |
C6.54(C2xC3:D4) = D12.24D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | 8- | C6.54(C2xC3:D4) | 288,594 |
C6.55(C2xC3:D4) = D12.12D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 96 | 8- | C6.55(C2xC3:D4) | 288,595 |
C6.56(C2xC3:D4) = Dic6.22D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.56(C2xC3:D4) | 288,596 |
C6.57(C2xC3:D4) = D12.13D6 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.57(C2xC3:D4) | 288,597 |
C6.58(C2xC3:D4) = C62.94C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.58(C2xC3:D4) | 288,600 |
C6.59(C2xC3:D4) = C62.100C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.59(C2xC3:D4) | 288,606 |
C6.60(C2xC3:D4) = C62.101C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.60(C2xC3:D4) | 288,607 |
C6.61(C2xC3:D4) = C62:3Q8 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.61(C2xC3:D4) | 288,612 |
C6.62(C2xC3:D4) = S3xC6.D4 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.62(C2xC3:D4) | 288,616 |
C6.63(C2xC3:D4) = C62.111C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.63(C2xC3:D4) | 288,617 |
C6.64(C2xC3:D4) = C62.112C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.64(C2xC3:D4) | 288,618 |
C6.65(C2xC3:D4) = C62.113C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.65(C2xC3:D4) | 288,619 |
C6.66(C2xC3:D4) = Dic3xC3:D4 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.66(C2xC3:D4) | 288,620 |
C6.67(C2xC3:D4) = C62.121C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.67(C2xC3:D4) | 288,627 |
C6.68(C2xC3:D4) = C62.125C23 | φ: C2xC3:D4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.68(C2xC3:D4) | 288,631 |
C6.69(C2xC3:D4) = C2xC32:2D8 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.69(C2xC3:D4) | 288,469 |
C6.70(C2xC3:D4) = D12.30D6 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.70(C2xC3:D4) | 288,470 |
C6.71(C2xC3:D4) = D12:20D6 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.71(C2xC3:D4) | 288,471 |
C6.72(C2xC3:D4) = C2xDic6:S3 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.72(C2xC3:D4) | 288,474 |
C6.73(C2xC3:D4) = D12.32D6 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.73(C2xC3:D4) | 288,475 |
C6.74(C2xC3:D4) = C2xC32:2Q16 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.74(C2xC3:D4) | 288,482 |
C6.75(C2xC3:D4) = D6:6Dic6 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.75(C2xC3:D4) | 288,504 |
C6.76(C2xC3:D4) = C62.33C23 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.76(C2xC3:D4) | 288,511 |
C6.77(C2xC3:D4) = C62.43C23 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.77(C2xC3:D4) | 288,521 |
C6.78(C2xC3:D4) = C4xD6:S3 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.78(C2xC3:D4) | 288,549 |
C6.79(C2xC3:D4) = D6:2D12 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.79(C2xC3:D4) | 288,556 |
C6.80(C2xC3:D4) = C62.84C23 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.80(C2xC3:D4) | 288,562 |
C6.81(C2xC3:D4) = C2xD6:Dic3 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.81(C2xC3:D4) | 288,608 |
C6.82(C2xC3:D4) = C62.56D4 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.82(C2xC3:D4) | 288,609 |
C6.83(C2xC3:D4) = C2xC62.C22 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.83(C2xC3:D4) | 288,615 |
C6.84(C2xC3:D4) = C62:4D4 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.84(C2xC3:D4) | 288,624 |
C6.85(C2xC3:D4) = C62:7D4 | φ: C2xC3:D4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.85(C2xC3:D4) | 288,628 |
C6.86(C2xC3:D4) = C2xDic9:C4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.86(C2xC3:D4) | 288,133 |
C6.87(C2xC3:D4) = C36.49D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.87(C2xC3:D4) | 288,134 |
C6.88(C2xC3:D4) = C2xD18:C4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.88(C2xC3:D4) | 288,137 |
C6.89(C2xC3:D4) = C4xC9:D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.89(C2xC3:D4) | 288,138 |
C6.90(C2xC3:D4) = C23.28D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.90(C2xC3:D4) | 288,139 |
C6.91(C2xC3:D4) = C36:7D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.91(C2xC3:D4) | 288,140 |
C6.92(C2xC3:D4) = C2xD4.D9 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.92(C2xC3:D4) | 288,141 |
C6.93(C2xC3:D4) = C2xD4:D9 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.93(C2xC3:D4) | 288,142 |
C6.94(C2xC3:D4) = D36:6C22 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.94(C2xC3:D4) | 288,143 |
C6.95(C2xC3:D4) = C23.23D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.95(C2xC3:D4) | 288,145 |
C6.96(C2xC3:D4) = C36.17D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.96(C2xC3:D4) | 288,146 |
C6.97(C2xC3:D4) = C23:2D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.97(C2xC3:D4) | 288,147 |
C6.98(C2xC3:D4) = C36:2D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.98(C2xC3:D4) | 288,148 |
C6.99(C2xC3:D4) = Dic9:D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.99(C2xC3:D4) | 288,149 |
C6.100(C2xC3:D4) = C36:D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.100(C2xC3:D4) | 288,150 |
C6.101(C2xC3:D4) = C2xC9:Q16 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.101(C2xC3:D4) | 288,151 |
C6.102(C2xC3:D4) = C2xQ8:2D9 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.102(C2xC3:D4) | 288,152 |
C6.103(C2xC3:D4) = C36.C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | 4 | C6.103(C2xC3:D4) | 288,153 |
C6.104(C2xC3:D4) = Dic9:Q8 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.104(C2xC3:D4) | 288,154 |
C6.105(C2xC3:D4) = D18:3Q8 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.105(C2xC3:D4) | 288,156 |
C6.106(C2xC3:D4) = C36.23D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.106(C2xC3:D4) | 288,157 |
C6.107(C2xC3:D4) = D4.D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.107(C2xC3:D4) | 288,159 |
C6.108(C2xC3:D4) = D4:D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.108(C2xC3:D4) | 288,160 |
C6.109(C2xC3:D4) = D4.9D18 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | 4 | C6.109(C2xC3:D4) | 288,161 |
C6.110(C2xC3:D4) = C2xC18.D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.110(C2xC3:D4) | 288,162 |
C6.111(C2xC3:D4) = C24:4D9 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.111(C2xC3:D4) | 288,163 |
C6.112(C2xC3:D4) = C22xC9:D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.112(C2xC3:D4) | 288,366 |
C6.113(C2xC3:D4) = C2xC6.Dic6 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.113(C2xC3:D4) | 288,780 |
C6.114(C2xC3:D4) = C62:10Q8 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.114(C2xC3:D4) | 288,781 |
C6.115(C2xC3:D4) = C2xC6.11D12 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.115(C2xC3:D4) | 288,784 |
C6.116(C2xC3:D4) = C4xC32:7D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.116(C2xC3:D4) | 288,785 |
C6.117(C2xC3:D4) = C62.129D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.117(C2xC3:D4) | 288,786 |
C6.118(C2xC3:D4) = C62:19D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.118(C2xC3:D4) | 288,787 |
C6.119(C2xC3:D4) = C2xC32:7D8 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.119(C2xC3:D4) | 288,788 |
C6.120(C2xC3:D4) = C62.131D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.120(C2xC3:D4) | 288,789 |
C6.121(C2xC3:D4) = C2xC32:9SD16 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.121(C2xC3:D4) | 288,790 |
C6.122(C2xC3:D4) = C62.72D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.122(C2xC3:D4) | 288,792 |
C6.123(C2xC3:D4) = C62.254C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.123(C2xC3:D4) | 288,793 |
C6.124(C2xC3:D4) = C62:13D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.124(C2xC3:D4) | 288,794 |
C6.125(C2xC3:D4) = C62.256C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.125(C2xC3:D4) | 288,795 |
C6.126(C2xC3:D4) = C62:14D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.126(C2xC3:D4) | 288,796 |
C6.127(C2xC3:D4) = C62.258C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.127(C2xC3:D4) | 288,797 |
C6.128(C2xC3:D4) = C2xC32:11SD16 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.128(C2xC3:D4) | 288,798 |
C6.129(C2xC3:D4) = C62.134D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.129(C2xC3:D4) | 288,799 |
C6.130(C2xC3:D4) = C2xC32:7Q16 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.130(C2xC3:D4) | 288,800 |
C6.131(C2xC3:D4) = C62.259C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 288 | | C6.131(C2xC3:D4) | 288,801 |
C6.132(C2xC3:D4) = C62.261C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.132(C2xC3:D4) | 288,803 |
C6.133(C2xC3:D4) = C62.262C23 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.133(C2xC3:D4) | 288,804 |
C6.134(C2xC3:D4) = C62.73D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.134(C2xC3:D4) | 288,806 |
C6.135(C2xC3:D4) = C62.74D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.135(C2xC3:D4) | 288,807 |
C6.136(C2xC3:D4) = C62.75D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.136(C2xC3:D4) | 288,808 |
C6.137(C2xC3:D4) = C2xC62:5C4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 144 | | C6.137(C2xC3:D4) | 288,809 |
C6.138(C2xC3:D4) = C62:24D4 | φ: C2xC3:D4/C22xC6 → C2 ⊆ Aut C6 | 72 | | C6.138(C2xC3:D4) | 288,810 |
C6.139(C2xC3:D4) = C6xDic3:C4 | central extension (φ=1) | 96 | | C6.139(C2xC3:D4) | 288,694 |
C6.140(C2xC3:D4) = C3xC12.48D4 | central extension (φ=1) | 48 | | C6.140(C2xC3:D4) | 288,695 |
C6.141(C2xC3:D4) = C6xD6:C4 | central extension (φ=1) | 96 | | C6.141(C2xC3:D4) | 288,698 |
C6.142(C2xC3:D4) = C12xC3:D4 | central extension (φ=1) | 48 | | C6.142(C2xC3:D4) | 288,699 |
C6.143(C2xC3:D4) = C3xC23.28D6 | central extension (φ=1) | 48 | | C6.143(C2xC3:D4) | 288,700 |
C6.144(C2xC3:D4) = C3xC12:7D4 | central extension (φ=1) | 48 | | C6.144(C2xC3:D4) | 288,701 |
C6.145(C2xC3:D4) = C6xD4:S3 | central extension (φ=1) | 48 | | C6.145(C2xC3:D4) | 288,702 |
C6.146(C2xC3:D4) = C3xD12:6C22 | central extension (φ=1) | 24 | 4 | C6.146(C2xC3:D4) | 288,703 |
C6.147(C2xC3:D4) = C6xD4.S3 | central extension (φ=1) | 48 | | C6.147(C2xC3:D4) | 288,704 |
C6.148(C2xC3:D4) = C3xC23.23D6 | central extension (φ=1) | 48 | | C6.148(C2xC3:D4) | 288,706 |
C6.149(C2xC3:D4) = C3xC23.12D6 | central extension (φ=1) | 48 | | C6.149(C2xC3:D4) | 288,707 |
C6.150(C2xC3:D4) = C3xC23:2D6 | central extension (φ=1) | 48 | | C6.150(C2xC3:D4) | 288,708 |
C6.151(C2xC3:D4) = C3xD6:3D4 | central extension (φ=1) | 48 | | C6.151(C2xC3:D4) | 288,709 |
C6.152(C2xC3:D4) = C3xC23.14D6 | central extension (φ=1) | 48 | | C6.152(C2xC3:D4) | 288,710 |
C6.153(C2xC3:D4) = C3xC12:3D4 | central extension (φ=1) | 48 | | C6.153(C2xC3:D4) | 288,711 |
C6.154(C2xC3:D4) = C6xQ8:2S3 | central extension (φ=1) | 96 | | C6.154(C2xC3:D4) | 288,712 |
C6.155(C2xC3:D4) = C3xQ8.11D6 | central extension (φ=1) | 48 | 4 | C6.155(C2xC3:D4) | 288,713 |
C6.156(C2xC3:D4) = C6xC3:Q16 | central extension (φ=1) | 96 | | C6.156(C2xC3:D4) | 288,714 |
C6.157(C2xC3:D4) = C3xDic3:Q8 | central extension (φ=1) | 96 | | C6.157(C2xC3:D4) | 288,715 |
C6.158(C2xC3:D4) = C3xD6:3Q8 | central extension (φ=1) | 96 | | C6.158(C2xC3:D4) | 288,717 |
C6.159(C2xC3:D4) = C3xC12.23D4 | central extension (φ=1) | 96 | | C6.159(C2xC3:D4) | 288,718 |
C6.160(C2xC3:D4) = C3xD4:D6 | central extension (φ=1) | 48 | 4 | C6.160(C2xC3:D4) | 288,720 |
C6.161(C2xC3:D4) = C3xQ8.13D6 | central extension (φ=1) | 48 | 4 | C6.161(C2xC3:D4) | 288,721 |
C6.162(C2xC3:D4) = C3xQ8.14D6 | central extension (φ=1) | 48 | 4 | C6.162(C2xC3:D4) | 288,722 |
C6.163(C2xC3:D4) = C6xC6.D4 | central extension (φ=1) | 48 | | C6.163(C2xC3:D4) | 288,723 |
C6.164(C2xC3:D4) = C3xC24:4S3 | central extension (φ=1) | 24 | | C6.164(C2xC3:D4) | 288,724 |