Direct product G=NxQ with N=C36 and Q=D4
Semidirect products G=N:Q with N=C36 and Q=D4
Non-split extensions G=N.Q with N=C36 and Q=D4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C36.1D4 = C18.Q16 | φ: D4/C2 → C22 ⊆ Aut C36 | 288 | | C36.1D4 | 288,16 |
C36.2D4 = C18.D8 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.2D4 | 288,17 |
C36.3D4 = C9:D16 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4+ | C36.3D4 | 288,33 |
C36.4D4 = D8.D9 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4- | C36.4D4 | 288,34 |
C36.5D4 = C9:SD32 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4+ | C36.5D4 | 288,35 |
C36.6D4 = C9:Q32 | φ: D4/C2 → C22 ⊆ Aut C36 | 288 | 4- | C36.6D4 | 288,36 |
C36.7D4 = C36.D4 | φ: D4/C2 → C22 ⊆ Aut C36 | 72 | 4 | C36.7D4 | 288,39 |
C36.8D4 = D4:Dic9 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.8D4 | 288,40 |
C36.9D4 = C36.9D4 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4 | C36.9D4 | 288,42 |
C36.10D4 = Q8:2Dic9 | φ: D4/C2 → C22 ⊆ Aut C36 | 288 | | C36.10D4 | 288,43 |
C36.11D4 = D18:2Q8 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.11D4 | 288,107 |
C36.12D4 = C8:D18 | φ: D4/C2 → C22 ⊆ Aut C36 | 72 | 4+ | C36.12D4 | 288,118 |
C36.13D4 = C8.D18 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4- | C36.13D4 | 288,119 |
C36.14D4 = C2xD4.D9 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.14D4 | 288,141 |
C36.15D4 = C2xD4:D9 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.15D4 | 288,142 |
C36.16D4 = D36:6C22 | φ: D4/C2 → C22 ⊆ Aut C36 | 72 | 4 | C36.16D4 | 288,143 |
C36.17D4 = C36.17D4 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.17D4 | 288,146 |
C36.18D4 = C2xC9:Q16 | φ: D4/C2 → C22 ⊆ Aut C36 | 288 | | C36.18D4 | 288,151 |
C36.19D4 = C2xQ8:2D9 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.19D4 | 288,152 |
C36.20D4 = C36.C23 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | 4 | C36.20D4 | 288,153 |
C36.21D4 = Dic9:Q8 | φ: D4/C2 → C22 ⊆ Aut C36 | 288 | | C36.21D4 | 288,154 |
C36.22D4 = D18:3Q8 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.22D4 | 288,156 |
C36.23D4 = C36.23D4 | φ: D4/C2 → C22 ⊆ Aut C36 | 144 | | C36.23D4 | 288,157 |
C36.24D4 = D144 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2+ | C36.24D4 | 288,6 |
C36.25D4 = C144:C2 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2 | C36.25D4 | 288,7 |
C36.26D4 = Dic72 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | 2- | C36.26D4 | 288,8 |
C36.27D4 = C36:2Q8 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | | C36.27D4 | 288,79 |
C36.28D4 = C42:7D9 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.28D4 | 288,85 |
C36.29D4 = C2xDic36 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | | C36.29D4 | 288,109 |
C36.30D4 = C2xC72:C2 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.30D4 | 288,113 |
C36.31D4 = C2xD72 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.31D4 | 288,114 |
C36.32D4 = C36:C8 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | | C36.32D4 | 288,11 |
C36.33D4 = C42:4D9 | φ: D4/C4 → C2 ⊆ Aut C36 | 72 | 2 | C36.33D4 | 288,12 |
C36.34D4 = C72.C4 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2 | C36.34D4 | 288,20 |
C36.35D4 = D18:C8 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.35D4 | 288,27 |
C36.36D4 = D72:7C2 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2 | C36.36D4 | 288,115 |
C36.37D4 = C9xD16 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2 | C36.37D4 | 288,61 |
C36.38D4 = C9xSD32 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | 2 | C36.38D4 | 288,62 |
C36.39D4 = C9xQ32 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | 2 | C36.39D4 | 288,63 |
C36.40D4 = C9xC4.4D4 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.40D4 | 288,174 |
C36.41D4 = C9xC4:Q8 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | | C36.41D4 | 288,178 |
C36.42D4 = D8xC18 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.42D4 | 288,182 |
C36.43D4 = SD16xC18 | φ: D4/C4 → C2 ⊆ Aut C36 | 144 | | C36.43D4 | 288,183 |
C36.44D4 = Q16xC18 | φ: D4/C4 → C2 ⊆ Aut C36 | 288 | | C36.44D4 | 288,184 |
C36.45D4 = C36.45D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 288 | | C36.45D4 | 288,24 |
C36.46D4 = C2.D72 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | | C36.46D4 | 288,28 |
C36.47D4 = C4.D36 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4- | C36.47D4 | 288,30 |
C36.48D4 = C36.48D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4+ | C36.48D4 | 288,31 |
C36.49D4 = C36.49D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | | C36.49D4 | 288,134 |
C36.50D4 = D4.D18 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4- | C36.50D4 | 288,159 |
C36.51D4 = D4:D18 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4+ | C36.51D4 | 288,160 |
C36.52D4 = Dic9:C8 | φ: D4/C22 → C2 ⊆ Aut C36 | 288 | | C36.52D4 | 288,22 |
C36.53D4 = C36.53D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4 | C36.53D4 | 288,29 |
C36.54D4 = Dic18:C4 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4 | C36.54D4 | 288,32 |
C36.55D4 = C36.55D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | | C36.55D4 | 288,37 |
C36.56D4 = Q8:3Dic9 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4 | C36.56D4 | 288,44 |
C36.57D4 = D4.9D18 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4 | C36.57D4 | 288,161 |
C36.58D4 = C9xC4.D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4 | C36.58D4 | 288,50 |
C36.59D4 = C9xC4.10D4 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4 | C36.59D4 | 288,51 |
C36.60D4 = C9xD4:C4 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | | C36.60D4 | 288,52 |
C36.61D4 = C9xQ8:C4 | φ: D4/C22 → C2 ⊆ Aut C36 | 288 | | C36.61D4 | 288,53 |
C36.62D4 = C9xC22:Q8 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | | C36.62D4 | 288,172 |
C36.63D4 = C9xC8:C22 | φ: D4/C22 → C2 ⊆ Aut C36 | 72 | 4 | C36.63D4 | 288,186 |
C36.64D4 = C9xC8.C22 | φ: D4/C22 → C2 ⊆ Aut C36 | 144 | 4 | C36.64D4 | 288,187 |
C36.65D4 = C9xC22:C8 | central extension (φ=1) | 144 | | C36.65D4 | 288,48 |
C36.66D4 = C9xC4wrC2 | central extension (φ=1) | 72 | 2 | C36.66D4 | 288,54 |
C36.67D4 = C9xC4:C8 | central extension (φ=1) | 288 | | C36.67D4 | 288,55 |
C36.68D4 = C9xC8.C4 | central extension (φ=1) | 144 | 2 | C36.68D4 | 288,58 |
C36.69D4 = C9xC4oD8 | central extension (φ=1) | 144 | 2 | C36.69D4 | 288,185 |
x
:
Z
F
o
wr
Q
<