extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3×D4) = C3×C6.D8 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.1(C3xD4) | 288,243 |
C12.2(C3×D4) = C3×C6.SD16 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.2(C3xD4) | 288,244 |
C12.3(C3×D4) = C3×C3⋊D16 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.3(C3xD4) | 288,260 |
C12.4(C3×D4) = C3×D8.S3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.4(C3xD4) | 288,261 |
C12.5(C3×D4) = C3×C8.6D6 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.5(C3xD4) | 288,262 |
C12.6(C3×D4) = C3×C3⋊Q32 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.6(C3xD4) | 288,263 |
C12.7(C3×D4) = C3×D4⋊Dic3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.7(C3xD4) | 288,266 |
C12.8(C3×D4) = C3×C12.D4 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.8(C3xD4) | 288,267 |
C12.9(C3×D4) = C3×Q8⋊2Dic3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.9(C3xD4) | 288,269 |
C12.10(C3×D4) = C3×C12.10D4 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.10(C3xD4) | 288,270 |
C12.11(C3×D4) = C3×C4.D12 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.11(C3xD4) | 288,668 |
C12.12(C3×D4) = C3×C8⋊D6 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.12(C3xD4) | 288,679 |
C12.13(C3×D4) = C3×C8.D6 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.13(C3xD4) | 288,680 |
C12.14(C3×D4) = C6×D4⋊S3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.14(C3xD4) | 288,702 |
C12.15(C3×D4) = C3×D12⋊6C22 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 24 | 4 | C12.15(C3xD4) | 288,703 |
C12.16(C3×D4) = C6×D4.S3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.16(C3xD4) | 288,704 |
C12.17(C3×D4) = C3×C23.12D6 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.17(C3xD4) | 288,707 |
C12.18(C3×D4) = C6×Q8⋊2S3 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.18(C3xD4) | 288,712 |
C12.19(C3×D4) = C3×Q8.11D6 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.19(C3xD4) | 288,713 |
C12.20(C3×D4) = C6×C3⋊Q16 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.20(C3xD4) | 288,714 |
C12.21(C3×D4) = C3×Dic3⋊Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.21(C3xD4) | 288,715 |
C12.22(C3×D4) = C3×D6⋊3Q8 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.22(C3xD4) | 288,717 |
C12.23(C3×D4) = C3×C12.23D4 | φ: C3×D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.23(C3xD4) | 288,718 |
C12.24(C3×D4) = C3×D48 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.24(C3xD4) | 288,233 |
C12.25(C3×D4) = C3×C48⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.25(C3xD4) | 288,234 |
C12.26(C3×D4) = C3×Dic24 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | 2 | C12.26(C3xD4) | 288,235 |
C12.27(C3×D4) = C3×C12⋊2Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.27(C3xD4) | 288,640 |
C12.28(C3×D4) = C3×C42⋊7S3 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.28(C3xD4) | 288,646 |
C12.29(C3×D4) = C6×C24⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.29(C3xD4) | 288,673 |
C12.30(C3×D4) = C6×D24 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.30(C3xD4) | 288,674 |
C12.31(C3×D4) = C6×Dic12 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.31(C3xD4) | 288,676 |
C12.32(C3×D4) = C3×C12⋊C8 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 96 | | C12.32(C3xD4) | 288,238 |
C12.33(C3×D4) = C3×C42⋊4S3 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 24 | 2 | C12.33(C3xD4) | 288,239 |
C12.34(C3×D4) = C3×C24.C4 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 48 | 2 | C12.34(C3xD4) | 288,253 |
C12.35(C3×D4) = C3×C4○D24 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 48 | 2 | C12.35(C3xD4) | 288,675 |
C12.36(C3×D4) = C9×D16 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.36(C3xD4) | 288,61 |
C12.37(C3×D4) = C9×SD32 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | 2 | C12.37(C3xD4) | 288,62 |
C12.38(C3×D4) = C9×Q32 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | 2 | C12.38(C3xD4) | 288,63 |
C12.39(C3×D4) = C9×C4.4D4 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.39(C3xD4) | 288,174 |
C12.40(C3×D4) = C9×C4⋊1D4 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.40(C3xD4) | 288,177 |
C12.41(C3×D4) = C9×C4⋊Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | | C12.41(C3xD4) | 288,178 |
C12.42(C3×D4) = D8×C18 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.42(C3xD4) | 288,182 |
C12.43(C3×D4) = SD16×C18 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.43(C3xD4) | 288,183 |
C12.44(C3×D4) = Q16×C18 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | | C12.44(C3xD4) | 288,184 |
C12.45(C3×D4) = C32×D16 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.45(C3xD4) | 288,329 |
C12.46(C3×D4) = C32×SD32 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.46(C3xD4) | 288,330 |
C12.47(C3×D4) = C32×Q32 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | | C12.47(C3xD4) | 288,331 |
C12.48(C3×D4) = C32×C4.4D4 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.48(C3xD4) | 288,821 |
C12.49(C3×D4) = C32×C4⋊Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | | C12.49(C3xD4) | 288,825 |
C12.50(C3×D4) = D8×C3×C6 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.50(C3xD4) | 288,829 |
C12.51(C3×D4) = SD16×C3×C6 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 144 | | C12.51(C3xD4) | 288,830 |
C12.52(C3×D4) = Q16×C3×C6 | φ: C3×D4/C12 → C2 ⊆ Aut C12 | 288 | | C12.52(C3xD4) | 288,831 |
C12.53(C3×D4) = C3×C2.Dic12 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.53(C3xD4) | 288,250 |
C12.54(C3×D4) = C3×C2.D24 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.54(C3xD4) | 288,255 |
C12.55(C3×D4) = C3×C12.46D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.55(C3xD4) | 288,257 |
C12.56(C3×D4) = C3×C12.47D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.56(C3xD4) | 288,258 |
C12.57(C3×D4) = C3×C12.48D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | | C12.57(C3xD4) | 288,695 |
C12.58(C3×D4) = C3×D4⋊D6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.58(C3xD4) | 288,720 |
C12.59(C3×D4) = C3×Q8.14D6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.59(C3xD4) | 288,722 |
C12.60(C3×D4) = C3×Dic3⋊C8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.60(C3xD4) | 288,248 |
C12.61(C3×D4) = C3×D6⋊C8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.61(C3xD4) | 288,254 |
C12.62(C3×D4) = C3×C12.53D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.62(C3xD4) | 288,256 |
C12.63(C3×D4) = C3×D12⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.63(C3xD4) | 288,259 |
C12.64(C3×D4) = C3×C12.55D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | | C12.64(C3xD4) | 288,264 |
C12.65(C3×D4) = C3×Q8⋊3Dic3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.65(C3xD4) | 288,271 |
C12.66(C3×D4) = C3×Q8.13D6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.66(C3xD4) | 288,721 |
C12.67(C3×D4) = C9×C4.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4 | C12.67(C3xD4) | 288,50 |
C12.68(C3×D4) = C9×C4.10D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4 | C12.68(C3xD4) | 288,51 |
C12.69(C3×D4) = C9×D4⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.69(C3xD4) | 288,52 |
C12.70(C3×D4) = C9×Q8⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.70(C3xD4) | 288,53 |
C12.71(C3×D4) = C9×C4⋊D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.71(C3xD4) | 288,171 |
C12.72(C3×D4) = C9×C22⋊Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.72(C3xD4) | 288,172 |
C12.73(C3×D4) = C9×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4 | C12.73(C3xD4) | 288,186 |
C12.74(C3×D4) = C9×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4 | C12.74(C3xD4) | 288,187 |
C12.75(C3×D4) = C32×C4.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.75(C3xD4) | 288,318 |
C12.76(C3×D4) = C32×C4.10D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.76(C3xD4) | 288,319 |
C12.77(C3×D4) = C32×D4⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.77(C3xD4) | 288,320 |
C12.78(C3×D4) = C32×Q8⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.78(C3xD4) | 288,321 |
C12.79(C3×D4) = C32×C22⋊Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.79(C3xD4) | 288,819 |
C12.80(C3×D4) = C32×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.80(C3xD4) | 288,833 |
C12.81(C3×D4) = C32×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.81(C3xD4) | 288,834 |
C12.82(C3×D4) = C9×C22⋊C8 | central extension (φ=1) | 144 | | C12.82(C3xD4) | 288,48 |
C12.83(C3×D4) = C9×C4≀C2 | central extension (φ=1) | 72 | 2 | C12.83(C3xD4) | 288,54 |
C12.84(C3×D4) = C9×C4⋊C8 | central extension (φ=1) | 288 | | C12.84(C3xD4) | 288,55 |
C12.85(C3×D4) = C9×C8.C4 | central extension (φ=1) | 144 | 2 | C12.85(C3xD4) | 288,58 |
C12.86(C3×D4) = D4×C36 | central extension (φ=1) | 144 | | C12.86(C3xD4) | 288,168 |
C12.87(C3×D4) = C9×C4○D8 | central extension (φ=1) | 144 | 2 | C12.87(C3xD4) | 288,185 |
C12.88(C3×D4) = C32×C22⋊C8 | central extension (φ=1) | 144 | | C12.88(C3xD4) | 288,316 |
C12.89(C3×D4) = C32×C4≀C2 | central extension (φ=1) | 72 | | C12.89(C3xD4) | 288,322 |
C12.90(C3×D4) = C32×C4⋊C8 | central extension (φ=1) | 288 | | C12.90(C3xD4) | 288,323 |
C12.91(C3×D4) = C32×C8.C4 | central extension (φ=1) | 144 | | C12.91(C3xD4) | 288,326 |
C12.92(C3×D4) = C32×C4○D8 | central extension (φ=1) | 144 | | C12.92(C3xD4) | 288,832 |