non-abelian, soluble, monomial
Aliases: C4.9S3≀C2, (C3×C12).1D4, C3⋊Dic3.2D4, C32⋊(C4.D4), D6⋊D6.1C2, C12.31D6⋊7C2, C32⋊M4(2)⋊1C2, (C2×S32).C4, C2.3(S32⋊C4), (C4×C3⋊S3).1C22, (C3×C6).2(C22⋊C4), (C2×C3⋊S3).6(C2×C4), SmallGroup(288,375)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C2×C3⋊S3 — C4.S3≀C2 |
C1 — C32 — C3×C6 — C2×C3⋊S3 — C4×C3⋊S3 — D6⋊D6 — C4.S3≀C2 |
C32 — C3×C6 — C2×C3⋊S3 — C4.S3≀C2 |
Generators and relations for C4.S3≀C2
G = < a,b,c,d,e | a4=b3=c3=e2=1, d4=a2, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=a-1d3 >
Subgroups: 520 in 83 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, M4(2), C2×D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C4.D4, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, C8⋊S3, S3×D4, C3×C3⋊C8, C32⋊2C8, D6⋊S3, C3×D12, C4×C3⋊S3, C2×S32, C12.31D6, C32⋊M4(2), D6⋊D6, C4.S3≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4.D4, S3≀C2, S32⋊C4, C4.S3≀C2
Character table of C4.S3≀C2
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 12 | 12 | 18 | 4 | 4 | 2 | 18 | 4 | 4 | 24 | 24 | 12 | 12 | 36 | 36 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | i | -i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -i | i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -2 | -2 | 0 | -2 | 1 | 4 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ13 | 4 | 4 | 2 | -2 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ14 | 4 | 4 | 2 | 2 | 0 | -2 | 1 | 4 | 0 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 1 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 1 | -2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | -2 | 2 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 1 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -1 | -1 | 2 | i | i | -i | -i | complex lifted from S32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -1 | -1 | 2 | -i | -i | i | i | complex lifted from S32⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | complex faithful |
ρ24 | 8 | -8 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 7 5 3)(2 4 6 8)(9 18 13 22)(10 23 14 19)(11 20 15 24)(12 17 16 21)
(1 17 10)(3 12 19)(5 21 14)(7 16 23)
(2 11 18)(4 20 13)(6 15 22)(8 24 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 3)(2 8)(4 6)(5 7)(9 18)(10 12)(11 24)(13 22)(14 16)(15 20)(17 19)(21 23)
G:=sub<Sym(24)| (1,7,5,3)(2,4,6,8)(9,18,13,22)(10,23,14,19)(11,20,15,24)(12,17,16,21), (1,17,10)(3,12,19)(5,21,14)(7,16,23), (2,11,18)(4,20,13)(6,15,22)(8,24,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,8)(4,6)(5,7)(9,18)(10,12)(11,24)(13,22)(14,16)(15,20)(17,19)(21,23)>;
G:=Group( (1,7,5,3)(2,4,6,8)(9,18,13,22)(10,23,14,19)(11,20,15,24)(12,17,16,21), (1,17,10)(3,12,19)(5,21,14)(7,16,23), (2,11,18)(4,20,13)(6,15,22)(8,24,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,8)(4,6)(5,7)(9,18)(10,12)(11,24)(13,22)(14,16)(15,20)(17,19)(21,23) );
G=PermutationGroup([[(1,7,5,3),(2,4,6,8),(9,18,13,22),(10,23,14,19),(11,20,15,24),(12,17,16,21)], [(1,17,10),(3,12,19),(5,21,14),(7,16,23)], [(2,11,18),(4,20,13),(6,15,22),(8,24,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,3),(2,8),(4,6),(5,7),(9,18),(10,12),(11,24),(13,22),(14,16),(15,20),(17,19),(21,23)]])
G:=TransitiveGroup(24,662);
Matrix representation of C4.S3≀C2 ►in GL4(𝔽5) generated by
1 | 3 | 2 | 3 |
3 | 1 | 3 | 4 |
1 | 1 | 2 | 1 |
4 | 4 | 0 | 1 |
0 | 0 | 2 | 4 |
0 | 4 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 4 | 2 | 4 |
4 | 4 | 0 | 0 |
1 | 0 | 0 | 0 |
3 | 0 | 1 | 2 |
1 | 4 | 1 | 3 |
0 | 3 | 1 | 0 |
0 | 4 | 1 | 0 |
1 | 2 | 1 | 1 |
1 | 4 | 1 | 0 |
1 | 0 | 2 | 4 |
0 | 0 | 2 | 0 |
0 | 3 | 0 | 0 |
0 | 1 | 2 | 4 |
G:=sub<GL(4,GF(5))| [1,3,1,4,3,1,1,4,2,3,2,0,3,4,1,1],[0,0,0,1,0,4,2,4,2,2,0,2,4,0,0,4],[4,1,3,1,4,0,0,4,0,0,1,1,0,0,2,3],[0,0,1,1,3,4,2,4,1,1,1,1,0,0,1,0],[1,0,0,0,0,0,3,1,2,2,0,2,4,0,0,4] >;
C4.S3≀C2 in GAP, Magma, Sage, TeX
C_4.S_3\wr C_2
% in TeX
G:=Group("C4.S3wrC2");
// GroupNames label
G:=SmallGroup(288,375);
// by ID
G=gap.SmallGroup(288,375);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,219,675,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^3=c^3=e^2=1,d^4=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=a^-1*d^3>;
// generators/relations
Export