Extensions 1→N→G→Q→1 with N=C4 and Q=S3≀C2

Direct product G=N×Q with N=C4 and Q=S3≀C2
dρLabelID
C4×S3≀C2244C4xS3wrC2288,877

Semidirect products G=N:Q with N=C4 and Q=S3≀C2
extensionφ:Q→Aut NdρLabelID
C41S3≀C2 = C4⋊S3≀C2φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4248+C4:1S3wrC2288,879
C42S3≀C2 = S32⋊D4φ: S3≀C2/S32C2 ⊆ Aut C4244C4:2S3wrC2288,878

Non-split extensions G=N.Q with N=C4 and Q=S3≀C2
extensionφ:Q→Aut NdρLabelID
C4.1S3≀C2 = C32⋊D16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4488+C4.1S3wrC2288,382
C4.2S3≀C2 = C32⋊SD32φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4488+C4.2S3wrC2288,383
C4.3S3≀C2 = C32⋊Q32φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4968-C4.3S3wrC2288,384
C4.4S3≀C2 = C4.4S3≀C2φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4248+C4.4S3wrC2288,869
C4.5S3≀C2 = C32⋊C4⋊Q8φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4488-C4.5S3wrC2288,870
C4.6S3≀C2 = C3⋊S3⋊D8φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4248+C4.6S3wrC2288,873
C4.7S3≀C2 = C3⋊S32SD16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4248+C4.7S3wrC2288,875
C4.8S3≀C2 = C3⋊S3⋊Q16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C4488-C4.8S3wrC2288,876
C4.9S3≀C2 = C4.S3≀C2φ: S3≀C2/S32C2 ⊆ Aut C4244C4.9S3wrC2288,375
C4.10S3≀C2 = (C3×C12).D4φ: S3≀C2/S32C2 ⊆ Aut C4484C4.10S3wrC2288,376
C4.11S3≀C2 = C3⋊S3.2D8φ: S3≀C2/S32C2 ⊆ Aut C4244C4.11S3wrC2288,377
C4.12S3≀C2 = C3⋊S3.2Q16φ: S3≀C2/S32C2 ⊆ Aut C4484C4.12S3wrC2288,378
C4.13S3≀C2 = S32⋊Q8φ: S3≀C2/S32C2 ⊆ Aut C4244C4.13S3wrC2288,868
C4.14S3≀C2 = C32⋊D8⋊C2φ: S3≀C2/S32C2 ⊆ Aut C4244C4.14S3wrC2288,872
C4.15S3≀C2 = C32⋊Q16⋊C2φ: S3≀C2/S32C2 ⊆ Aut C4484C4.15S3wrC2288,874
C4.16S3≀C2 = S32⋊C8central extension (φ=1)244C4.16S3wrC2288,374
C4.17S3≀C2 = C32⋊C4≀C2central extension (φ=1)484C4.17S3wrC2288,379
C4.18S3≀C2 = C32⋊C4⋊C8central extension (φ=1)484C4.18S3wrC2288,380
C4.19S3≀C2 = C4.19S3≀C2central extension (φ=1)484C4.19S3wrC2288,381
C4.20S3≀C2 = C32⋊D85C2central extension (φ=1)484C4.20S3wrC2288,871

׿
×
𝔽