extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1S3≀C2 = C32⋊D16 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.1S3wrC2 | 288,382 |
C4.2S3≀C2 = C32⋊SD32 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.2S3wrC2 | 288,383 |
C4.3S3≀C2 = C32⋊Q32 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 96 | 8- | C4.3S3wrC2 | 288,384 |
C4.4S3≀C2 = C4.4S3≀C2 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 24 | 8+ | C4.4S3wrC2 | 288,869 |
C4.5S3≀C2 = C32⋊C4⋊Q8 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 48 | 8- | C4.5S3wrC2 | 288,870 |
C4.6S3≀C2 = C3⋊S3⋊D8 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 24 | 8+ | C4.6S3wrC2 | 288,873 |
C4.7S3≀C2 = C3⋊S3⋊2SD16 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 24 | 8+ | C4.7S3wrC2 | 288,875 |
C4.8S3≀C2 = C3⋊S3⋊Q16 | φ: S3≀C2/C32⋊C4 → C2 ⊆ Aut C4 | 48 | 8- | C4.8S3wrC2 | 288,876 |
C4.9S3≀C2 = C4.S3≀C2 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 24 | 4 | C4.9S3wrC2 | 288,375 |
C4.10S3≀C2 = (C3×C12).D4 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 48 | 4 | C4.10S3wrC2 | 288,376 |
C4.11S3≀C2 = C3⋊S3.2D8 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 24 | 4 | C4.11S3wrC2 | 288,377 |
C4.12S3≀C2 = C3⋊S3.2Q16 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 48 | 4 | C4.12S3wrC2 | 288,378 |
C4.13S3≀C2 = S32⋊Q8 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 24 | 4 | C4.13S3wrC2 | 288,868 |
C4.14S3≀C2 = C32⋊D8⋊C2 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 24 | 4 | C4.14S3wrC2 | 288,872 |
C4.15S3≀C2 = C32⋊Q16⋊C2 | φ: S3≀C2/S32 → C2 ⊆ Aut C4 | 48 | 4 | C4.15S3wrC2 | 288,874 |
C4.16S3≀C2 = S32⋊C8 | central extension (φ=1) | 24 | 4 | C4.16S3wrC2 | 288,374 |
C4.17S3≀C2 = C32⋊C4≀C2 | central extension (φ=1) | 48 | 4 | C4.17S3wrC2 | 288,379 |
C4.18S3≀C2 = C32⋊C4⋊C8 | central extension (φ=1) | 48 | 4 | C4.18S3wrC2 | 288,380 |
C4.19S3≀C2 = C4.19S3≀C2 | central extension (φ=1) | 48 | 4 | C4.19S3wrC2 | 288,381 |
C4.20S3≀C2 = C32⋊D8⋊5C2 | central extension (φ=1) | 48 | 4 | C4.20S3wrC2 | 288,871 |