Extensions 1→N→G→Q→1 with N=C4 and Q=S3wrC2

Direct product G=NxQ with N=C4 and Q=S3wrC2
dρLabelID
C4xS3wrC2244C4xS3wrC2288,877

Semidirect products G=N:Q with N=C4 and Q=S3wrC2
extensionφ:Q→Aut NdρLabelID
C4:1S3wrC2 = C4:S3wrC2φ: S3wrC2/C32:C4C2 ⊆ Aut C4248+C4:1S3wrC2288,879
C4:2S3wrC2 = S32:D4φ: S3wrC2/S32C2 ⊆ Aut C4244C4:2S3wrC2288,878

Non-split extensions G=N.Q with N=C4 and Q=S3wrC2
extensionφ:Q→Aut NdρLabelID
C4.1S3wrC2 = C32:D16φ: S3wrC2/C32:C4C2 ⊆ Aut C4488+C4.1S3wrC2288,382
C4.2S3wrC2 = C32:SD32φ: S3wrC2/C32:C4C2 ⊆ Aut C4488+C4.2S3wrC2288,383
C4.3S3wrC2 = C32:Q32φ: S3wrC2/C32:C4C2 ⊆ Aut C4968-C4.3S3wrC2288,384
C4.4S3wrC2 = C4.4S3wrC2φ: S3wrC2/C32:C4C2 ⊆ Aut C4248+C4.4S3wrC2288,869
C4.5S3wrC2 = C32:C4:Q8φ: S3wrC2/C32:C4C2 ⊆ Aut C4488-C4.5S3wrC2288,870
C4.6S3wrC2 = C3:S3:D8φ: S3wrC2/C32:C4C2 ⊆ Aut C4248+C4.6S3wrC2288,873
C4.7S3wrC2 = C3:S3:2SD16φ: S3wrC2/C32:C4C2 ⊆ Aut C4248+C4.7S3wrC2288,875
C4.8S3wrC2 = C3:S3:Q16φ: S3wrC2/C32:C4C2 ⊆ Aut C4488-C4.8S3wrC2288,876
C4.9S3wrC2 = C4.S3wrC2φ: S3wrC2/S32C2 ⊆ Aut C4244C4.9S3wrC2288,375
C4.10S3wrC2 = (C3xC12).D4φ: S3wrC2/S32C2 ⊆ Aut C4484C4.10S3wrC2288,376
C4.11S3wrC2 = C3:S3.2D8φ: S3wrC2/S32C2 ⊆ Aut C4244C4.11S3wrC2288,377
C4.12S3wrC2 = C3:S3.2Q16φ: S3wrC2/S32C2 ⊆ Aut C4484C4.12S3wrC2288,378
C4.13S3wrC2 = S32:Q8φ: S3wrC2/S32C2 ⊆ Aut C4244C4.13S3wrC2288,868
C4.14S3wrC2 = C32:D8:C2φ: S3wrC2/S32C2 ⊆ Aut C4244C4.14S3wrC2288,872
C4.15S3wrC2 = C32:Q16:C2φ: S3wrC2/S32C2 ⊆ Aut C4484C4.15S3wrC2288,874
C4.16S3wrC2 = S32:C8central extension (φ=1)244C4.16S3wrC2288,374
C4.17S3wrC2 = C32:C4wrC2central extension (φ=1)484C4.17S3wrC2288,379
C4.18S3wrC2 = C32:C4:C8central extension (φ=1)484C4.18S3wrC2288,380
C4.19S3wrC2 = C4.19S3wrC2central extension (φ=1)484C4.19S3wrC2288,381
C4.20S3wrC2 = C32:D8:5C2central extension (φ=1)484C4.20S3wrC2288,871

׿
x
:
Z
F
o
wr
Q
<