Extensions 1→N→G→Q→1 with N=C4○D12 and Q=S3

Direct product G=N×Q with N=C4○D12 and Q=S3
dρLabelID
S3×C4○D12484S3xC4oD12288,953

Semidirect products G=N:Q with N=C4○D12 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D121S3 = D12.27D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12:1S3288,477
C4○D122S3 = D12.30D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12:2S3288,470
C4○D123S3 = D1220D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12:3S3288,471
C4○D124S3 = D1218D6φ: S3/C3C2 ⊆ Out C4○D12244+C4oD12:4S3288,473
C4○D125S3 = D12.33D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12:5S3288,945
C4○D126S3 = D12.34D6φ: S3/C3C2 ⊆ Out C4○D12484-C4oD12:6S3288,946
C4○D127S3 = D1223D6φ: S3/C3C2 ⊆ Out C4○D12244C4oD12:7S3288,954
C4○D128S3 = D1224D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12:8S3288,955
C4○D129S3 = D1227D6φ: S3/C3C2 ⊆ Out C4○D12244+C4oD12:9S3288,956

Non-split extensions G=N.Q with N=C4○D12 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D12.1S3 = D122Dic3φ: S3/C3C2 ⊆ Out C4○D12484C4oD12.1S3288,217
C4○D12.2S3 = D124Dic3φ: S3/C3C2 ⊆ Out C4○D12244C4oD12.2S3288,216
C4○D12.3S3 = D12.Dic3φ: S3/C3C2 ⊆ Out C4○D12484C4oD12.3S3288,463
C4○D12.4S3 = D12.32D6φ: S3/C3C2 ⊆ Out C4○D12484C4oD12.4S3288,475
C4○D12.5S3 = D12.29D6φ: S3/C3C2 ⊆ Out C4○D12484-C4oD12.5S3288,479
C4○D12.6S3 = D12.2Dic3φ: trivial image484C4oD12.6S3288,462

׿
×
𝔽