Extensions 1→N→G→Q→1 with N=C3×C4○D12 and Q=C2

Direct product G=N×Q with N=C3×C4○D12 and Q=C2
dρLabelID
C6×C4○D1248C6xC4oD12288,991

Semidirect products G=N:Q with N=C3×C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4○D12)⋊1C2 = D12.30D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):1C2288,470
(C3×C4○D12)⋊2C2 = D1220D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):2C2288,471
(C3×C4○D12)⋊3C2 = D1218D6φ: C2/C1C2 ⊆ Out C3×C4○D12244+(C3xC4oD12):3C2288,473
(C3×C4○D12)⋊4C2 = D12.27D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):4C2288,477
(C3×C4○D12)⋊5C2 = C3×C4○D24φ: C2/C1C2 ⊆ Out C3×C4○D12482(C3xC4oD12):5C2288,675
(C3×C4○D12)⋊6C2 = C3×C8⋊D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):6C2288,679
(C3×C4○D12)⋊7C2 = C3×D126C22φ: C2/C1C2 ⊆ Out C3×C4○D12244(C3xC4oD12):7C2288,703
(C3×C4○D12)⋊8C2 = C3×Q8.13D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):8C2288,721
(C3×C4○D12)⋊9C2 = D12.33D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):9C2288,945
(C3×C4○D12)⋊10C2 = D12.34D6φ: C2/C1C2 ⊆ Out C3×C4○D12484-(C3xC4oD12):10C2288,946
(C3×C4○D12)⋊11C2 = S3×C4○D12φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):11C2288,953
(C3×C4○D12)⋊12C2 = D1223D6φ: C2/C1C2 ⊆ Out C3×C4○D12244(C3xC4oD12):12C2288,954
(C3×C4○D12)⋊13C2 = D1224D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):13C2288,955
(C3×C4○D12)⋊14C2 = D1227D6φ: C2/C1C2 ⊆ Out C3×C4○D12244+(C3xC4oD12):14C2288,956
(C3×C4○D12)⋊15C2 = C3×D46D6φ: C2/C1C2 ⊆ Out C3×C4○D12244(C3xC4oD12):15C2288,994
(C3×C4○D12)⋊16C2 = C3×Q8.15D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):16C2288,997
(C3×C4○D12)⋊17C2 = C3×S3×C4○D4φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):17C2288,998
(C3×C4○D12)⋊18C2 = C3×D4○D12φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):18C2288,999
(C3×C4○D12)⋊19C2 = C3×Q8○D12φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12):19C2288,1000

Non-split extensions G=N.Q with N=C3×C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C4○D12).1C2 = D124Dic3φ: C2/C1C2 ⊆ Out C3×C4○D12244(C3xC4oD12).1C2288,216
(C3×C4○D12).2C2 = D122Dic3φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).2C2288,217
(C3×C4○D12).3C2 = C3×C424S3φ: C2/C1C2 ⊆ Out C3×C4○D12242(C3xC4oD12).3C2288,239
(C3×C4○D12).4C2 = C3×D12⋊C4φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).4C2288,259
(C3×C4○D12).5C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).5C2288,462
(C3×C4○D12).6C2 = D12.Dic3φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).6C2288,463
(C3×C4○D12).7C2 = D12.32D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).7C2288,475
(C3×C4○D12).8C2 = D12.29D6φ: C2/C1C2 ⊆ Out C3×C4○D12484-(C3xC4oD12).8C2288,479
(C3×C4○D12).9C2 = C3×D12.C4φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).9C2288,678
(C3×C4○D12).10C2 = C3×C8.D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).10C2288,680
(C3×C4○D12).11C2 = C3×Q8.11D6φ: C2/C1C2 ⊆ Out C3×C4○D12484(C3xC4oD12).11C2288,713
(C3×C4○D12).12C2 = C3×C8○D12φ: trivial image482(C3xC4oD12).12C2288,672

׿
×
𝔽