Extensions 1→N→G→Q→1 with N=C3xC4oD12 and Q=C2

Direct product G=NxQ with N=C3xC4oD12 and Q=C2
dρLabelID
C6xC4oD1248C6xC4oD12288,991

Semidirect products G=N:Q with N=C3xC4oD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4oD12):1C2 = D12.30D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):1C2288,470
(C3xC4oD12):2C2 = D12:20D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):2C2288,471
(C3xC4oD12):3C2 = D12:18D6φ: C2/C1C2 ⊆ Out C3xC4oD12244+(C3xC4oD12):3C2288,473
(C3xC4oD12):4C2 = D12.27D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):4C2288,477
(C3xC4oD12):5C2 = C3xC4oD24φ: C2/C1C2 ⊆ Out C3xC4oD12482(C3xC4oD12):5C2288,675
(C3xC4oD12):6C2 = C3xC8:D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):6C2288,679
(C3xC4oD12):7C2 = C3xD12:6C22φ: C2/C1C2 ⊆ Out C3xC4oD12244(C3xC4oD12):7C2288,703
(C3xC4oD12):8C2 = C3xQ8.13D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):8C2288,721
(C3xC4oD12):9C2 = D12.33D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):9C2288,945
(C3xC4oD12):10C2 = D12.34D6φ: C2/C1C2 ⊆ Out C3xC4oD12484-(C3xC4oD12):10C2288,946
(C3xC4oD12):11C2 = S3xC4oD12φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):11C2288,953
(C3xC4oD12):12C2 = D12:23D6φ: C2/C1C2 ⊆ Out C3xC4oD12244(C3xC4oD12):12C2288,954
(C3xC4oD12):13C2 = D12:24D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):13C2288,955
(C3xC4oD12):14C2 = D12:27D6φ: C2/C1C2 ⊆ Out C3xC4oD12244+(C3xC4oD12):14C2288,956
(C3xC4oD12):15C2 = C3xD4:6D6φ: C2/C1C2 ⊆ Out C3xC4oD12244(C3xC4oD12):15C2288,994
(C3xC4oD12):16C2 = C3xQ8.15D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):16C2288,997
(C3xC4oD12):17C2 = C3xS3xC4oD4φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):17C2288,998
(C3xC4oD12):18C2 = C3xD4oD12φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):18C2288,999
(C3xC4oD12):19C2 = C3xQ8oD12φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12):19C2288,1000

Non-split extensions G=N.Q with N=C3xC4oD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4oD12).1C2 = D12:4Dic3φ: C2/C1C2 ⊆ Out C3xC4oD12244(C3xC4oD12).1C2288,216
(C3xC4oD12).2C2 = D12:2Dic3φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).2C2288,217
(C3xC4oD12).3C2 = C3xC42:4S3φ: C2/C1C2 ⊆ Out C3xC4oD12242(C3xC4oD12).3C2288,239
(C3xC4oD12).4C2 = C3xD12:C4φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).4C2288,259
(C3xC4oD12).5C2 = D12.2Dic3φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).5C2288,462
(C3xC4oD12).6C2 = D12.Dic3φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).6C2288,463
(C3xC4oD12).7C2 = D12.32D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).7C2288,475
(C3xC4oD12).8C2 = D12.29D6φ: C2/C1C2 ⊆ Out C3xC4oD12484-(C3xC4oD12).8C2288,479
(C3xC4oD12).9C2 = C3xD12.C4φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).9C2288,678
(C3xC4oD12).10C2 = C3xC8.D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).10C2288,680
(C3xC4oD12).11C2 = C3xQ8.11D6φ: C2/C1C2 ⊆ Out C3xC4oD12484(C3xC4oD12).11C2288,713
(C3xC4oD12).12C2 = C3xC8oD12φ: trivial image482(C3xC4oD12).12C2288,672

׿
x
:
Z
F
o
wr
Q
<