extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D12)⋊1C2 = D12.30D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):1C2 | 288,470 |
(C3×C4○D12)⋊2C2 = D12⋊20D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):2C2 | 288,471 |
(C3×C4○D12)⋊3C2 = D12⋊18D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4+ | (C3xC4oD12):3C2 | 288,473 |
(C3×C4○D12)⋊4C2 = D12.27D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):4C2 | 288,477 |
(C3×C4○D12)⋊5C2 = C3×C4○D24 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 2 | (C3xC4oD12):5C2 | 288,675 |
(C3×C4○D12)⋊6C2 = C3×C8⋊D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):6C2 | 288,679 |
(C3×C4○D12)⋊7C2 = C3×D12⋊6C22 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4 | (C3xC4oD12):7C2 | 288,703 |
(C3×C4○D12)⋊8C2 = C3×Q8.13D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):8C2 | 288,721 |
(C3×C4○D12)⋊9C2 = D12.33D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):9C2 | 288,945 |
(C3×C4○D12)⋊10C2 = D12.34D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4- | (C3xC4oD12):10C2 | 288,946 |
(C3×C4○D12)⋊11C2 = S3×C4○D12 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):11C2 | 288,953 |
(C3×C4○D12)⋊12C2 = D12⋊23D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4 | (C3xC4oD12):12C2 | 288,954 |
(C3×C4○D12)⋊13C2 = D12⋊24D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):13C2 | 288,955 |
(C3×C4○D12)⋊14C2 = D12⋊27D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4+ | (C3xC4oD12):14C2 | 288,956 |
(C3×C4○D12)⋊15C2 = C3×D4⋊6D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4 | (C3xC4oD12):15C2 | 288,994 |
(C3×C4○D12)⋊16C2 = C3×Q8.15D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):16C2 | 288,997 |
(C3×C4○D12)⋊17C2 = C3×S3×C4○D4 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):17C2 | 288,998 |
(C3×C4○D12)⋊18C2 = C3×D4○D12 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):18C2 | 288,999 |
(C3×C4○D12)⋊19C2 = C3×Q8○D12 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12):19C2 | 288,1000 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D12).1C2 = D12⋊4Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 4 | (C3xC4oD12).1C2 | 288,216 |
(C3×C4○D12).2C2 = D12⋊2Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).2C2 | 288,217 |
(C3×C4○D12).3C2 = C3×C42⋊4S3 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 24 | 2 | (C3xC4oD12).3C2 | 288,239 |
(C3×C4○D12).4C2 = C3×D12⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).4C2 | 288,259 |
(C3×C4○D12).5C2 = D12.2Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).5C2 | 288,462 |
(C3×C4○D12).6C2 = D12.Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).6C2 | 288,463 |
(C3×C4○D12).7C2 = D12.32D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).7C2 | 288,475 |
(C3×C4○D12).8C2 = D12.29D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4- | (C3xC4oD12).8C2 | 288,479 |
(C3×C4○D12).9C2 = C3×D12.C4 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).9C2 | 288,678 |
(C3×C4○D12).10C2 = C3×C8.D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).10C2 | 288,680 |
(C3×C4○D12).11C2 = C3×Q8.11D6 | φ: C2/C1 → C2 ⊆ Out C3×C4○D12 | 48 | 4 | (C3xC4oD12).11C2 | 288,713 |
(C3×C4○D12).12C2 = C3×C8○D12 | φ: trivial image | 48 | 2 | (C3xC4oD12).12C2 | 288,672 |