metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8.D9, C9⋊2SD32, C24.7D6, C8.5D18, C36.4D4, C18.9D8, Dic36⋊3C2, C72.3C22, C9⋊C16⋊2C2, (C9×D8).1C2, (C3×D8).2S3, C3.(D8.S3), C2.5(D4⋊D9), C4.2(C9⋊D4), C6.16(D4⋊S3), C12.2(C3⋊D4), SmallGroup(288,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8.D9
G = < a,b,c,d | a8=b2=c9=1, d2=a4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a5b, dcd-1=c-1 >
(1 59 23 50 14 68 32 41)(2 60 24 51 15 69 33 42)(3 61 25 52 16 70 34 43)(4 62 26 53 17 71 35 44)(5 63 27 54 18 72 36 45)(6 55 19 46 10 64 28 37)(7 56 20 47 11 65 29 38)(8 57 21 48 12 66 30 39)(9 58 22 49 13 67 31 40)(73 109 100 136 82 118 91 127)(74 110 101 137 83 119 92 128)(75 111 102 138 84 120 93 129)(76 112 103 139 85 121 94 130)(77 113 104 140 86 122 95 131)(78 114 105 141 87 123 96 132)(79 115 106 142 88 124 97 133)(80 116 107 143 89 125 98 134)(81 117 108 144 90 126 99 135)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 37)(7 38)(8 39)(9 40)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 84 14 75)(2 83 15 74)(3 82 16 73)(4 90 17 81)(5 89 18 80)(6 88 10 79)(7 87 11 78)(8 86 12 77)(9 85 13 76)(19 106 28 97)(20 105 29 96)(21 104 30 95)(22 103 31 94)(23 102 32 93)(24 101 33 92)(25 100 34 91)(26 108 35 99)(27 107 36 98)(37 124 46 115)(38 123 47 114)(39 122 48 113)(40 121 49 112)(41 120 50 111)(42 119 51 110)(43 118 52 109)(44 126 53 117)(45 125 54 116)(55 142 64 133)(56 141 65 132)(57 140 66 131)(58 139 67 130)(59 138 68 129)(60 137 69 128)(61 136 70 127)(62 144 71 135)(63 143 72 134)
G:=sub<Sym(144)| (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40)(73,109,100,136,82,118,91,127)(74,110,101,137,83,119,92,128)(75,111,102,138,84,120,93,129)(76,112,103,139,85,121,94,130)(77,113,104,140,86,122,95,131)(78,114,105,141,87,123,96,132)(79,115,106,142,88,124,97,133)(80,116,107,143,89,125,98,134)(81,117,108,144,90,126,99,135), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,84,14,75)(2,83,15,74)(3,82,16,73)(4,90,17,81)(5,89,18,80)(6,88,10,79)(7,87,11,78)(8,86,12,77)(9,85,13,76)(19,106,28,97)(20,105,29,96)(21,104,30,95)(22,103,31,94)(23,102,32,93)(24,101,33,92)(25,100,34,91)(26,108,35,99)(27,107,36,98)(37,124,46,115)(38,123,47,114)(39,122,48,113)(40,121,49,112)(41,120,50,111)(42,119,51,110)(43,118,52,109)(44,126,53,117)(45,125,54,116)(55,142,64,133)(56,141,65,132)(57,140,66,131)(58,139,67,130)(59,138,68,129)(60,137,69,128)(61,136,70,127)(62,144,71,135)(63,143,72,134)>;
G:=Group( (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40)(73,109,100,136,82,118,91,127)(74,110,101,137,83,119,92,128)(75,111,102,138,84,120,93,129)(76,112,103,139,85,121,94,130)(77,113,104,140,86,122,95,131)(78,114,105,141,87,123,96,132)(79,115,106,142,88,124,97,133)(80,116,107,143,89,125,98,134)(81,117,108,144,90,126,99,135), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,84,14,75)(2,83,15,74)(3,82,16,73)(4,90,17,81)(5,89,18,80)(6,88,10,79)(7,87,11,78)(8,86,12,77)(9,85,13,76)(19,106,28,97)(20,105,29,96)(21,104,30,95)(22,103,31,94)(23,102,32,93)(24,101,33,92)(25,100,34,91)(26,108,35,99)(27,107,36,98)(37,124,46,115)(38,123,47,114)(39,122,48,113)(40,121,49,112)(41,120,50,111)(42,119,51,110)(43,118,52,109)(44,126,53,117)(45,125,54,116)(55,142,64,133)(56,141,65,132)(57,140,66,131)(58,139,67,130)(59,138,68,129)(60,137,69,128)(61,136,70,127)(62,144,71,135)(63,143,72,134) );
G=PermutationGroup([[(1,59,23,50,14,68,32,41),(2,60,24,51,15,69,33,42),(3,61,25,52,16,70,34,43),(4,62,26,53,17,71,35,44),(5,63,27,54,18,72,36,45),(6,55,19,46,10,64,28,37),(7,56,20,47,11,65,29,38),(8,57,21,48,12,66,30,39),(9,58,22,49,13,67,31,40),(73,109,100,136,82,118,91,127),(74,110,101,137,83,119,92,128),(75,111,102,138,84,120,93,129),(76,112,103,139,85,121,94,130),(77,113,104,140,86,122,95,131),(78,114,105,141,87,123,96,132),(79,115,106,142,88,124,97,133),(80,116,107,143,89,125,98,134),(81,117,108,144,90,126,99,135)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,37),(7,38),(8,39),(9,40),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,84,14,75),(2,83,15,74),(3,82,16,73),(4,90,17,81),(5,89,18,80),(6,88,10,79),(7,87,11,78),(8,86,12,77),(9,85,13,76),(19,106,28,97),(20,105,29,96),(21,104,30,95),(22,103,31,94),(23,102,32,93),(24,101,33,92),(25,100,34,91),(26,108,35,99),(27,107,36,98),(37,124,46,115),(38,123,47,114),(39,122,48,113),(40,121,49,112),(41,120,50,111),(42,119,51,110),(43,118,52,109),(44,126,53,117),(45,125,54,116),(55,142,64,133),(56,141,65,132),(57,140,66,131),(58,139,67,130),(59,138,68,129),(60,137,69,128),(61,136,70,127),(62,144,71,135),(63,143,72,134)]])
39 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 9A | 9B | 9C | 12 | 16A | 16B | 16C | 16D | 18A | 18B | 18C | 18D | ··· | 18I | 24A | 24B | 36A | 36B | 36C | 72A | ··· | 72F |
order | 1 | 2 | 2 | 3 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | ··· | 18 | 24 | 24 | 36 | 36 | 36 | 72 | ··· | 72 |
size | 1 | 1 | 8 | 2 | 2 | 72 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 4 | 18 | 18 | 18 | 18 | 2 | 2 | 2 | 8 | ··· | 8 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D8 | D9 | C3⋊D4 | SD32 | D18 | C9⋊D4 | D4⋊S3 | D8.S3 | D4⋊D9 | D8.D9 |
kernel | D8.D9 | C9⋊C16 | Dic36 | C9×D8 | C3×D8 | C36 | C24 | C18 | D8 | C12 | C9 | C8 | C4 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 4 | 3 | 6 | 1 | 2 | 3 | 6 |
Matrix representation of D8.D9 ►in GL4(𝔽433) generated by
432 | 0 | 0 | 0 |
0 | 432 | 0 | 0 |
0 | 0 | 0 | 213 |
0 | 0 | 124 | 206 |
432 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 213 |
0 | 0 | 309 | 0 |
296 | 0 | 0 | 0 |
0 | 256 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 256 | 0 | 0 |
296 | 0 | 0 | 0 |
0 | 0 | 187 | 159 |
0 | 0 | 194 | 246 |
G:=sub<GL(4,GF(433))| [432,0,0,0,0,432,0,0,0,0,0,124,0,0,213,206],[432,0,0,0,0,1,0,0,0,0,0,309,0,0,213,0],[296,0,0,0,0,256,0,0,0,0,1,0,0,0,0,1],[0,296,0,0,256,0,0,0,0,0,187,194,0,0,159,246] >;
D8.D9 in GAP, Magma, Sage, TeX
D_8.D_9
% in TeX
G:=Group("D8.D9");
// GroupNames label
G:=SmallGroup(288,34);
// by ID
G=gap.SmallGroup(288,34);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,85,254,135,142,675,346,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^9=1,d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export