Copied to
clipboard

G = C9⋊D16order 288 = 25·32

The semidirect product of C9 and D16 acting via D16/D8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C92D16, D81D9, D723C2, C8.4D18, C24.6D6, C36.3D4, C18.8D8, C72.2C22, C9⋊C161C2, (C9×D8)⋊1C2, C3.(C3⋊D16), (C3×D8).1S3, C2.4(D4⋊D9), C4.1(C9⋊D4), C6.15(D4⋊S3), C12.1(C3⋊D4), SmallGroup(288,33)

Series: Derived Chief Lower central Upper central

C1C72 — C9⋊D16
C1C3C9C18C36C72D72 — C9⋊D16
C9C18C36C72 — C9⋊D16
C1C2C4C8D8

Generators and relations for C9⋊D16
 G = < a,b,c | a9=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >

8C2
72C2
4C22
36C22
8C6
24S3
2D4
18D4
4C2×C6
12D6
8C18
8D9
9D8
9C16
2C3×D4
6D12
4C2×C18
4D18
9D16
3D24
3C3⋊C16
2D36
2D4×C9
3C3⋊D16

Smallest permutation representation of C9⋊D16
On 144 points
Generators in S144
(1 132 55 122 90 44 102 23 77)(2 78 24 103 45 91 123 56 133)(3 134 57 124 92 46 104 25 79)(4 80 26 105 47 93 125 58 135)(5 136 59 126 94 48 106 27 65)(6 66 28 107 33 95 127 60 137)(7 138 61 128 96 34 108 29 67)(8 68 30 109 35 81 113 62 139)(9 140 63 114 82 36 110 31 69)(10 70 32 111 37 83 115 64 141)(11 142 49 116 84 38 112 17 71)(12 72 18 97 39 85 117 50 143)(13 144 51 118 86 40 98 19 73)(14 74 20 99 41 87 119 52 129)(15 130 53 120 88 42 100 21 75)(16 76 22 101 43 89 121 54 131)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 61)(18 60)(19 59)(20 58)(21 57)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 49)(30 64)(31 63)(32 62)(33 85)(34 84)(35 83)(36 82)(37 81)(38 96)(39 95)(40 94)(41 93)(42 92)(43 91)(44 90)(45 89)(46 88)(47 87)(48 86)(65 144)(66 143)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)(97 127)(98 126)(99 125)(100 124)(101 123)(102 122)(103 121)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(112 128)

G:=sub<Sym(144)| (1,132,55,122,90,44,102,23,77)(2,78,24,103,45,91,123,56,133)(3,134,57,124,92,46,104,25,79)(4,80,26,105,47,93,125,58,135)(5,136,59,126,94,48,106,27,65)(6,66,28,107,33,95,127,60,137)(7,138,61,128,96,34,108,29,67)(8,68,30,109,35,81,113,62,139)(9,140,63,114,82,36,110,31,69)(10,70,32,111,37,83,115,64,141)(11,142,49,116,84,38,112,17,71)(12,72,18,97,39,85,117,50,143)(13,144,51,118,86,40,98,19,73)(14,74,20,99,41,87,119,52,129)(15,130,53,120,88,42,100,21,75)(16,76,22,101,43,89,121,54,131), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,64)(31,63)(32,62)(33,85)(34,84)(35,83)(36,82)(37,81)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(112,128)>;

G:=Group( (1,132,55,122,90,44,102,23,77)(2,78,24,103,45,91,123,56,133)(3,134,57,124,92,46,104,25,79)(4,80,26,105,47,93,125,58,135)(5,136,59,126,94,48,106,27,65)(6,66,28,107,33,95,127,60,137)(7,138,61,128,96,34,108,29,67)(8,68,30,109,35,81,113,62,139)(9,140,63,114,82,36,110,31,69)(10,70,32,111,37,83,115,64,141)(11,142,49,116,84,38,112,17,71)(12,72,18,97,39,85,117,50,143)(13,144,51,118,86,40,98,19,73)(14,74,20,99,41,87,119,52,129)(15,130,53,120,88,42,100,21,75)(16,76,22,101,43,89,121,54,131), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,64)(31,63)(32,62)(33,85)(34,84)(35,83)(36,82)(37,81)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(112,128) );

G=PermutationGroup([[(1,132,55,122,90,44,102,23,77),(2,78,24,103,45,91,123,56,133),(3,134,57,124,92,46,104,25,79),(4,80,26,105,47,93,125,58,135),(5,136,59,126,94,48,106,27,65),(6,66,28,107,33,95,127,60,137),(7,138,61,128,96,34,108,29,67),(8,68,30,109,35,81,113,62,139),(9,140,63,114,82,36,110,31,69),(10,70,32,111,37,83,115,64,141),(11,142,49,116,84,38,112,17,71),(12,72,18,97,39,85,117,50,143),(13,144,51,118,86,40,98,19,73),(14,74,20,99,41,87,119,52,129),(15,130,53,120,88,42,100,21,75),(16,76,22,101,43,89,121,54,131)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,61),(18,60),(19,59),(20,58),(21,57),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,49),(30,64),(31,63),(32,62),(33,85),(34,84),(35,83),(36,82),(37,81),(38,96),(39,95),(40,94),(41,93),(42,92),(43,91),(44,90),(45,89),(46,88),(47,87),(48,86),(65,144),(66,143),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129),(97,127),(98,126),(99,125),(100,124),(101,123),(102,122),(103,121),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(112,128)]])

39 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C8A8B9A9B9C 12 16A16B16C16D18A18B18C18D···18I24A24B36A36B36C72A···72F
order12223466688999121616161618181818···18242436363672···72
size1187222288222224181818182228···8444444···4

39 irreducible representations

dim11112222222224444
type+++++++++++++++
imageC1C2C2C2S3D4D6D8D9C3⋊D4D16D18C9⋊D4D4⋊S3C3⋊D16D4⋊D9C9⋊D16
kernelC9⋊D16C9⋊C16D72C9×D8C3×D8C36C24C18D8C12C9C8C4C6C3C2C1
# reps11111112324361236

Matrix representation of C9⋊D16 in GL4(𝔽433) generated by

3503600
39738600
0010
0001
,
0100
1000
0021482
00392132
,
0100
1000
0010
00432432
G:=sub<GL(4,GF(433))| [350,397,0,0,36,386,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,214,392,0,0,82,132],[0,1,0,0,1,0,0,0,0,0,1,432,0,0,0,432] >;

C9⋊D16 in GAP, Magma, Sage, TeX

C_9\rtimes D_{16}
% in TeX

G:=Group("C9:D16");
// GroupNames label

G:=SmallGroup(288,33);
// by ID

G=gap.SmallGroup(288,33);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,254,135,142,675,346,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^9=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9⋊D16 in TeX

׿
×
𝔽