Extensions 1→N→G→Q→1 with N=C3 and Q=D4×Dic3

Direct product G=N×Q with N=C3 and Q=D4×Dic3
dρLabelID
C3×D4×Dic348C3xD4xDic3288,705

Semidirect products G=N:Q with N=C3 and Q=D4×Dic3
extensionφ:Q→Aut NdρLabelID
C31(D4×Dic3) = Dic3×D12φ: D4×Dic3/C4×Dic3C2 ⊆ Aut C396C3:1(D4xDic3)288,540
C32(D4×Dic3) = D12⋊Dic3φ: D4×Dic3/C4⋊Dic3C2 ⊆ Aut C396C3:2(D4xDic3)288,546
C33(D4×Dic3) = C62.115C23φ: D4×Dic3/C6.D4C2 ⊆ Aut C348C3:3(D4xDic3)288,621
C34(D4×Dic3) = Dic3×C3⋊D4φ: D4×Dic3/C22×Dic3C2 ⊆ Aut C348C3:4(D4xDic3)288,620
C35(D4×Dic3) = D4×C3⋊Dic3φ: D4×Dic3/C6×D4C2 ⊆ Aut C3144C3:5(D4xDic3)288,791

Non-split extensions G=N.Q with N=C3 and Q=D4×Dic3
extensionφ:Q→Aut NdρLabelID
C3.(D4×Dic3) = D4×Dic9φ: D4×Dic3/C6×D4C2 ⊆ Aut C3144C3.(D4xDic3)288,144

׿
×
𝔽