Extensions 1→N→G→Q→1 with N=C3 and Q=D63D4

Direct product G=N×Q with N=C3 and Q=D63D4
dρLabelID
C3×D63D448C3xD6:3D4288,709

Semidirect products G=N:Q with N=C3 and Q=D63D4
extensionφ:Q→Aut NdρLabelID
C31(D63D4) = C122D12φ: D63D4/C4⋊Dic3C2 ⊆ Aut C348C3:1(D6:3D4)288,564
C32(D63D4) = C62.100C23φ: D63D4/C6.D4C2 ⊆ Aut C348C3:2(D6:3D4)288,606
C33(D63D4) = D62D12φ: D63D4/S3×C2×C4C2 ⊆ Aut C396C3:3(D6:3D4)288,556
C34(D63D4) = C62.112C23φ: D63D4/C2×C3⋊D4C2 ⊆ Aut C348C3:4(D6:3D4)288,618
C35(D63D4) = C62.256C23φ: D63D4/C6×D4C2 ⊆ Aut C3144C3:5(D6:3D4)288,795

Non-split extensions G=N.Q with N=C3 and Q=D63D4
extensionφ:Q→Aut NdρLabelID
C3.(D63D4) = C362D4φ: D63D4/C6×D4C2 ⊆ Aut C3144C3.(D6:3D4)288,148

׿
×
𝔽