Copied to
clipboard

G = D6:2D12order 288 = 25·32

2nd semidirect product of D6 and D12 acting via D12/C12=C2

metabelian, supersoluble, monomial

Aliases: D6:2D12, C62.78C23, (S3xC6):9D4, (C3xC12):4D4, (C6xD12):5C2, (C2xD12):4S3, C6.21(S3xD4), C12:9(C3:D4), D6:Dic3:4C2, C6.22(C2xD12), C2.23(S3xD12), C3:3(D6:3D4), C4:2(D6:S3), C3:3(C12:7D4), (C2xC12).282D6, C32:6(C4:D4), C6.48(C4oD12), (C22xS3).14D6, C12:Dic3:19C2, C6.27(D4:2S3), (C6xC12).105C22, (C2xDic3).100D6, C2.18(D12:5S3), (C6xDic3).115C22, (S3xC2xC4):1S3, (S3xC2xC12):3C2, (C2xC4).81S32, (C3xC6).57(C2xD4), C6.79(C2xC3:D4), (C2xD6:S3):3C2, C22.116(C2xS32), (S3xC2xC6).29C22, (C3xC6).48(C4oD4), C2.13(C2xD6:S3), (C2xC6).97(C22xS3), (C2xC3:Dic3).55C22, SmallGroup(288,556)

Series: Derived Chief Lower central Upper central

C1C62 — D6:2D12
C1C3C32C3xC6C62S3xC2xC6C2xD6:S3 — D6:2D12
C32C62 — D6:2D12
C1C22C2xC4

Generators and relations for D6:2D12
 G = < a,b,c,d | a6=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 778 in 201 conjugacy classes, 56 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C4:D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C62, C4:Dic3, D6:C4, C6.D4, S3xC2xC4, C2xD12, C2xC3:D4, C22xC12, C6xD4, D6:S3, S3xC12, C3xD12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, S3xC2xC6, C12:7D4, D6:3D4, D6:Dic3, C12:Dic3, C2xD6:S3, S3xC2xC12, C6xD12, D6:2D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, S32, C2xD12, C4oD12, S3xD4, D4:2S3, C2xC3:D4, D6:S3, C2xS32, C12:7D4, D6:3D4, D12:5S3, S3xD12, C2xD6:S3, D6:2D12

Smallest permutation representation of D6:2D12
On 96 points
Generators in S96
(1 79 5 83 9 75)(2 80 6 84 10 76)(3 81 7 73 11 77)(4 82 8 74 12 78)(13 47 17 39 21 43)(14 48 18 40 22 44)(15 37 19 41 23 45)(16 38 20 42 24 46)(25 69 33 65 29 61)(26 70 34 66 30 62)(27 71 35 67 31 63)(28 72 36 68 32 64)(49 96 57 92 53 88)(50 85 58 93 54 89)(51 86 59 94 55 90)(52 87 60 95 56 91)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 92)(14 93)(15 94)(16 95)(17 96)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(37 59)(38 60)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(61 82)(62 83)(63 84)(64 73)(65 74)(66 75)(67 76)(68 77)(69 78)(70 79)(71 80)(72 81)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 90)(2 89)(3 88)(4 87)(5 86)(6 85)(7 96)(8 95)(9 94)(10 93)(11 92)(12 91)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 48)(36 47)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 84)(59 83)(60 82)

G:=sub<Sym(96)| (1,79,5,83,9,75)(2,80,6,84,10,76)(3,81,7,73,11,77)(4,82,8,74,12,78)(13,47,17,39,21,43)(14,48,18,40,22,44)(15,37,19,41,23,45)(16,38,20,42,24,46)(25,69,33,65,29,61)(26,70,34,66,30,62)(27,71,35,67,31,63)(28,72,36,68,32,64)(49,96,57,92,53,88)(50,85,58,93,54,89)(51,86,59,94,55,90)(52,87,60,95,56,91), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(37,59)(38,60)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(61,82)(62,83)(63,84)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,96)(8,95)(9,94)(10,93)(11,92)(12,91)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82)>;

G:=Group( (1,79,5,83,9,75)(2,80,6,84,10,76)(3,81,7,73,11,77)(4,82,8,74,12,78)(13,47,17,39,21,43)(14,48,18,40,22,44)(15,37,19,41,23,45)(16,38,20,42,24,46)(25,69,33,65,29,61)(26,70,34,66,30,62)(27,71,35,67,31,63)(28,72,36,68,32,64)(49,96,57,92,53,88)(50,85,58,93,54,89)(51,86,59,94,55,90)(52,87,60,95,56,91), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(37,59)(38,60)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(61,82)(62,83)(63,84)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,96)(8,95)(9,94)(10,93)(11,92)(12,91)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82) );

G=PermutationGroup([[(1,79,5,83,9,75),(2,80,6,84,10,76),(3,81,7,73,11,77),(4,82,8,74,12,78),(13,47,17,39,21,43),(14,48,18,40,22,44),(15,37,19,41,23,45),(16,38,20,42,24,46),(25,69,33,65,29,61),(26,70,34,66,30,62),(27,71,35,67,31,63),(28,72,36,68,32,64),(49,96,57,92,53,88),(50,85,58,93,54,89),(51,86,59,94,55,90),(52,87,60,95,56,91)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,92),(14,93),(15,94),(16,95),(17,96),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(37,59),(38,60),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(61,82),(62,83),(63,84),(64,73),(65,74),(66,75),(67,76),(68,77),(69,78),(70,79),(71,80),(72,81)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,90),(2,89),(3,88),(4,87),(5,86),(6,85),(7,96),(8,95),(9,94),(10,93),(11,92),(12,91),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,48),(36,47),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,84),(59,83),(60,82)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F6A···6F6G6H6I6J6K6L6M6N6O6P6Q12A12B12C12D12E···12J12K12L12M12N
order122222223334444446···6666666666661212121212···1212121212
size1111661212224226636362···244466661212121222224···46666

48 irreducible representations

dim111111222222222224444444
type++++++++++++++++--+-+
imageC1C2C2C2C2C2S3S3D4D4D6D6D6C4oD4C3:D4D12C4oD12S32S3xD4D4:2S3D6:S3C2xS32D12:5S3S3xD12
kernelD6:2D12D6:Dic3C12:Dic3C2xD6:S3S3xC2xC12C6xD12S3xC2xC4C2xD12C3xC12S3xC6C2xDic3C2xC12C22xS3C3xC6C12D6C6C2xC4C6C6C4C22C2C2
# reps121211112212328441112122

Matrix representation of D6:2D12 in GL6(F13)

100000
010000
001000
000100
000040
0000310
,
1200000
0120000
0012000
0001200
000083
000055
,
010000
1200000
0011200
001000
000010
000001
,
720000
260000
0012000
0012100
0000120
000011

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,0,10],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,5,0,0,0,0,3,5],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,2,0,0,0,0,2,6,0,0,0,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,1] >;

D6:2D12 in GAP, Magma, Sage, TeX

D_6\rtimes_2D_{12}
% in TeX

G:=Group("D6:2D12");
// GroupNames label

G:=SmallGroup(288,556);
// by ID

G=gap.SmallGroup(288,556);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<