Copied to
clipboard

G = C362D4order 288 = 25·32

2nd semidirect product of C36 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C362D4, D183D4, C23.13D18, (C2×D4)⋊4D9, (D4×C18)⋊3C2, C94(C4⋊D4), C42(C9⋊D4), (C6×D4).8S3, C2.26(D4×D9), C4⋊Dic914C2, C3.(D63D4), (C2×C4).52D18, C6.101(S3×D4), C18.51(C2×D4), (C2×C12).60D6, (C22×C6).51D6, C18.31(C4○D4), C12.13(C3⋊D4), (C2×C36).38C22, (C2×C18).53C23, C6.88(D42S3), C2.17(D42D9), C18.D411C2, C22.60(C22×D9), (C22×C18).20C22, (C2×Dic9).17C22, (C22×D9).26C22, (C2×C4×D9)⋊2C2, (C2×C9⋊D4)⋊5C2, C6.98(C2×C3⋊D4), C2.14(C2×C9⋊D4), (C2×C6).210(C22×S3), SmallGroup(288,148)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C362D4
C1C3C9C18C2×C18C22×D9C2×C4×D9 — C362D4
C9C2×C18 — C362D4
C1C22C2×D4

Generators and relations for C362D4
 G = < a,b,c | a36=b4=c2=1, bab-1=a-1, cac=a17, cbc=b-1 >

Subgroups: 612 in 141 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, D9, C18, C18, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, Dic9, C36, D18, D18, C2×C18, C2×C18, C4⋊Dic3, C6.D4, S3×C2×C4, C2×C3⋊D4, C6×D4, C4×D9, C2×Dic9, C2×Dic9, C9⋊D4, C2×C36, D4×C9, C22×D9, C22×C18, D63D4, C4⋊Dic9, C18.D4, C2×C4×D9, C2×C9⋊D4, D4×C18, C362D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, C3⋊D4, C22×S3, C4⋊D4, D18, S3×D4, D42S3, C2×C3⋊D4, C9⋊D4, C22×D9, D63D4, D4×D9, D42D9, C2×C9⋊D4, C362D4

Smallest permutation representation of C362D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 83 47 119)(2 82 48 118)(3 81 49 117)(4 80 50 116)(5 79 51 115)(6 78 52 114)(7 77 53 113)(8 76 54 112)(9 75 55 111)(10 74 56 110)(11 73 57 109)(12 108 58 144)(13 107 59 143)(14 106 60 142)(15 105 61 141)(16 104 62 140)(17 103 63 139)(18 102 64 138)(19 101 65 137)(20 100 66 136)(21 99 67 135)(22 98 68 134)(23 97 69 133)(24 96 70 132)(25 95 71 131)(26 94 72 130)(27 93 37 129)(28 92 38 128)(29 91 39 127)(30 90 40 126)(31 89 41 125)(32 88 42 124)(33 87 43 123)(34 86 44 122)(35 85 45 121)(36 84 46 120)
(2 18)(3 35)(4 16)(5 33)(6 14)(7 31)(8 12)(9 29)(11 27)(13 25)(15 23)(17 21)(20 36)(22 34)(24 32)(26 30)(37 57)(39 55)(40 72)(41 53)(42 70)(43 51)(44 68)(45 49)(46 66)(48 64)(50 62)(52 60)(54 58)(59 71)(61 69)(63 67)(73 129)(74 110)(75 127)(76 144)(77 125)(78 142)(79 123)(80 140)(81 121)(82 138)(83 119)(84 136)(85 117)(86 134)(87 115)(88 132)(89 113)(90 130)(91 111)(92 128)(93 109)(94 126)(95 143)(96 124)(97 141)(98 122)(99 139)(100 120)(101 137)(102 118)(103 135)(104 116)(105 133)(106 114)(107 131)(108 112)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,83,47,119)(2,82,48,118)(3,81,49,117)(4,80,50,116)(5,79,51,115)(6,78,52,114)(7,77,53,113)(8,76,54,112)(9,75,55,111)(10,74,56,110)(11,73,57,109)(12,108,58,144)(13,107,59,143)(14,106,60,142)(15,105,61,141)(16,104,62,140)(17,103,63,139)(18,102,64,138)(19,101,65,137)(20,100,66,136)(21,99,67,135)(22,98,68,134)(23,97,69,133)(24,96,70,132)(25,95,71,131)(26,94,72,130)(27,93,37,129)(28,92,38,128)(29,91,39,127)(30,90,40,126)(31,89,41,125)(32,88,42,124)(33,87,43,123)(34,86,44,122)(35,85,45,121)(36,84,46,120), (2,18)(3,35)(4,16)(5,33)(6,14)(7,31)(8,12)(9,29)(11,27)(13,25)(15,23)(17,21)(20,36)(22,34)(24,32)(26,30)(37,57)(39,55)(40,72)(41,53)(42,70)(43,51)(44,68)(45,49)(46,66)(48,64)(50,62)(52,60)(54,58)(59,71)(61,69)(63,67)(73,129)(74,110)(75,127)(76,144)(77,125)(78,142)(79,123)(80,140)(81,121)(82,138)(83,119)(84,136)(85,117)(86,134)(87,115)(88,132)(89,113)(90,130)(91,111)(92,128)(93,109)(94,126)(95,143)(96,124)(97,141)(98,122)(99,139)(100,120)(101,137)(102,118)(103,135)(104,116)(105,133)(106,114)(107,131)(108,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,83,47,119)(2,82,48,118)(3,81,49,117)(4,80,50,116)(5,79,51,115)(6,78,52,114)(7,77,53,113)(8,76,54,112)(9,75,55,111)(10,74,56,110)(11,73,57,109)(12,108,58,144)(13,107,59,143)(14,106,60,142)(15,105,61,141)(16,104,62,140)(17,103,63,139)(18,102,64,138)(19,101,65,137)(20,100,66,136)(21,99,67,135)(22,98,68,134)(23,97,69,133)(24,96,70,132)(25,95,71,131)(26,94,72,130)(27,93,37,129)(28,92,38,128)(29,91,39,127)(30,90,40,126)(31,89,41,125)(32,88,42,124)(33,87,43,123)(34,86,44,122)(35,85,45,121)(36,84,46,120), (2,18)(3,35)(4,16)(5,33)(6,14)(7,31)(8,12)(9,29)(11,27)(13,25)(15,23)(17,21)(20,36)(22,34)(24,32)(26,30)(37,57)(39,55)(40,72)(41,53)(42,70)(43,51)(44,68)(45,49)(46,66)(48,64)(50,62)(52,60)(54,58)(59,71)(61,69)(63,67)(73,129)(74,110)(75,127)(76,144)(77,125)(78,142)(79,123)(80,140)(81,121)(82,138)(83,119)(84,136)(85,117)(86,134)(87,115)(88,132)(89,113)(90,130)(91,111)(92,128)(93,109)(94,126)(95,143)(96,124)(97,141)(98,122)(99,139)(100,120)(101,137)(102,118)(103,135)(104,116)(105,133)(106,114)(107,131)(108,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,83,47,119),(2,82,48,118),(3,81,49,117),(4,80,50,116),(5,79,51,115),(6,78,52,114),(7,77,53,113),(8,76,54,112),(9,75,55,111),(10,74,56,110),(11,73,57,109),(12,108,58,144),(13,107,59,143),(14,106,60,142),(15,105,61,141),(16,104,62,140),(17,103,63,139),(18,102,64,138),(19,101,65,137),(20,100,66,136),(21,99,67,135),(22,98,68,134),(23,97,69,133),(24,96,70,132),(25,95,71,131),(26,94,72,130),(27,93,37,129),(28,92,38,128),(29,91,39,127),(30,90,40,126),(31,89,41,125),(32,88,42,124),(33,87,43,123),(34,86,44,122),(35,85,45,121),(36,84,46,120)], [(2,18),(3,35),(4,16),(5,33),(6,14),(7,31),(8,12),(9,29),(11,27),(13,25),(15,23),(17,21),(20,36),(22,34),(24,32),(26,30),(37,57),(39,55),(40,72),(41,53),(42,70),(43,51),(44,68),(45,49),(46,66),(48,64),(50,62),(52,60),(54,58),(59,71),(61,69),(63,67),(73,129),(74,110),(75,127),(76,144),(77,125),(78,142),(79,123),(80,140),(81,121),(82,138),(83,119),(84,136),(85,117),(86,134),(87,115),(88,132),(89,113),(90,130),(91,111),(92,128),(93,109),(94,126),(95,143),(96,124),(97,141),(98,122),(99,139),(100,120),(101,137),(102,118),(103,135),(104,116),(105,133),(106,114),(107,131),(108,112)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222234444446666666999121218···1818···1836···36
size1111441818222181836362224444222442···24···44···4

54 irreducible representations

dim111111222222222224444
type+++++++++++++++-+-
imageC1C2C2C2C2C2S3D4D4D6D6C4○D4D9C3⋊D4D18D18C9⋊D4S3×D4D42S3D4×D9D42D9
kernelC362D4C4⋊Dic9C18.D4C2×C4×D9C2×C9⋊D4D4×C18C6×D4C36D18C2×C12C22×C6C18C2×D4C12C2×C4C23C4C6C6C2C2
# reps1121211221223436121133

Matrix representation of C362D4 in GL6(𝔽37)

17110000
2660000
001000
000100
0000310
000006
,
3600000
110000
0003600
001000
0000036
000010
,
100000
36360000
001000
0003600
000010
0000036

G:=sub<GL(6,GF(37))| [17,26,0,0,0,0,11,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,0,0,0,0,0,0,6],[36,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,36,0],[1,36,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,36] >;

C362D4 in GAP, Magma, Sage, TeX

C_{36}\rtimes_2D_4
% in TeX

G:=Group("C36:2D4");
// GroupNames label

G:=SmallGroup(288,148);
// by ID

G=gap.SmallGroup(288,148);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^17,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽