Extensions 1→N→G→Q→1 with N=C2xC3:D12 and Q=C2

Direct product G=NxQ with N=C2xC3:D12 and Q=C2
dρLabelID
C22xC3:D1248C2^2xC3:D12288,974

Semidirect products G=N:Q with N=C2xC3:D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC3:D12):1C2 = Dic3:D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):1C2288,534
(C2xC3:D12):2C2 = D6:D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):2C2288,554
(C2xC3:D12):3C2 = C12:7D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):3C2288,557
(C2xC3:D12):4C2 = C12:D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):4C2288,559
(C2xC3:D12):5C2 = C62.82C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):5C2288,560
(C2xC3:D12):6C2 = C12:2D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):6C2288,564
(C2xC3:D12):7C2 = D6:4D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):7C2288,570
(C2xC3:D12):8C2 = D6:5D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):8C2288,571
(C2xC3:D12):9C2 = C62.100C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):9C2288,606
(C2xC3:D12):10C2 = C62.113C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):10C2288,619
(C2xC3:D12):11C2 = C62:5D4φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):11C2288,625
(C2xC3:D12):12C2 = C62:6D4φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):12C2288,626
(C2xC3:D12):13C2 = C62:8D4φ: C2/C1C2 ⊆ Out C2xC3:D1224(C2xC3:D12):13C2288,629
(C2xC3:D12):14C2 = C2xS3xD12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):14C2288,951
(C2xC3:D12):15C2 = C2xD6.3D6φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):15C2288,970
(C2xC3:D12):16C2 = Dic3:3D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):16C2288,558
(C2xC3:D12):17C2 = C62.121C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):17C2288,627
(C2xC3:D12):18C2 = C2xD12:S3φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):18C2288,944
(C2xC3:D12):19C2 = C2xD6.6D6φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):19C2288,949
(C2xC3:D12):20C2 = D12:13D6φ: C2/C1C2 ⊆ Out C2xC3:D12248+(C2xC3:D12):20C2288,962
(C2xC3:D12):21C2 = C2xS3xC3:D4φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12):21C2288,976
(C2xC3:D12):22C2 = C2xDic3:D6φ: C2/C1C2 ⊆ Out C2xC3:D1224(C2xC3:D12):22C2288,977
(C2xC3:D12):23C2 = C2xD6.D6φ: trivial image48(C2xC3:D12):23C2288,948

Non-split extensions G=N.Q with N=C2xC3:D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC3:D12).1C2 = C62.20C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).1C2288,498
(C2xC3:D12).2C2 = Dic3.D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).2C2288,500
(C2xC3:D12).3C2 = C62.23C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).3C2288,501
(C2xC3:D12).4C2 = C62.24C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).4C2288,502
(C2xC3:D12).5C2 = Dic3:4D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).5C2288,528
(C2xC3:D12).6C2 = D6.D12φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).6C2288,538
(C2xC3:D12).7C2 = C62.51C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).7C2288,529
(C2xC3:D12).8C2 = C62.74C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).8C2288,552
(C2xC3:D12).9C2 = C62.77C23φ: C2/C1C2 ⊆ Out C2xC3:D1248(C2xC3:D12).9C2288,555
(C2xC3:D12).10C2 = C4xC3:D12φ: trivial image48(C2xC3:D12).10C2288,551

׿
x
:
Z
F
o
wr
Q
<