metabelian, supersoluble, monomial
Aliases: D6⋊1D12, C62.76C23, D6⋊C4⋊3S3, (S3×C6)⋊8D4, C6.20(S3×D4), C6.21(C2×D12), C2.22(S3×D12), C3⋊4(Dic3⋊D4), C3⋊2(C12⋊7D4), (C3×Dic3)⋊11D4, (C2×C12).262D6, C32⋊5(C4⋊D4), Dic3⋊Dic3⋊8C2, C6.33(C4○D12), Dic3⋊4(C3⋊D4), (C2×Dic3).30D6, (C22×S3).12D6, C6.11D12⋊17C2, (C6×C12).237C22, C2.17(D6.D6), (C6×Dic3).15C22, (S3×C2×C12)⋊1C2, (S3×C2×C4)⋊13S3, (C2×C4).51S32, (C3×D6⋊C4)⋊6C2, C6.38(C2×C3⋊D4), C2.17(S3×C3⋊D4), (C2×D6⋊S3)⋊2C2, (C2×C3⋊D12)⋊2C2, C22.114(C2×S32), (C3×C6).103(C2×D4), (S3×C2×C6).27C22, (C3×C6).46(C4○D4), (C2×C6).95(C22×S3), (C22×C3⋊S3).21C22, (C2×C3⋊Dic3).53C22, SmallGroup(288,554)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊D12
G = < a,b,c,d | a6=b2=c12=d2=1, bab=cac-1=dad=a-1, cbc-1=a4b, dbd=ab, dcd=c-1 >
Subgroups: 922 in 205 conjugacy classes, 52 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C4⋊D4, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, Dic3⋊C4, C4⋊Dic3, D6⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C22×C12, D6⋊S3, C3⋊D12, S3×C12, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C22×C3⋊S3, Dic3⋊D4, C12⋊7D4, Dic3⋊Dic3, C3×D6⋊C4, C6.11D12, C2×D6⋊S3, C2×C3⋊D12, S3×C2×C12, D6⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C3⋊D4, C22×S3, C4⋊D4, S32, C2×D12, C4○D12, S3×D4, C2×C3⋊D4, C2×S32, Dic3⋊D4, C12⋊7D4, D6.D6, S3×D12, S3×C3⋊D4, D6⋊D12
(1 48 5 40 9 44)(2 45 10 41 6 37)(3 38 7 42 11 46)(4 47 12 43 8 39)(13 30 17 34 21 26)(14 27 22 35 18 31)(15 32 19 36 23 28)(16 29 24 25 20 33)
(1 31)(2 28)(3 33)(4 30)(5 35)(6 32)(7 25)(8 34)(9 27)(10 36)(11 29)(12 26)(13 47)(14 44)(15 37)(16 46)(17 39)(18 48)(19 41)(20 38)(21 43)(22 40)(23 45)(24 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 48)(8 47)(9 46)(10 45)(11 44)(12 43)(13 17)(14 16)(18 24)(19 23)(20 22)(25 35)(26 34)(27 33)(28 32)(29 31)
G:=sub<Sym(48)| (1,48,5,40,9,44)(2,45,10,41,6,37)(3,38,7,42,11,46)(4,47,12,43,8,39)(13,30,17,34,21,26)(14,27,22,35,18,31)(15,32,19,36,23,28)(16,29,24,25,20,33), (1,31)(2,28)(3,33)(4,30)(5,35)(6,32)(7,25)(8,34)(9,27)(10,36)(11,29)(12,26)(13,47)(14,44)(15,37)(16,46)(17,39)(18,48)(19,41)(20,38)(21,43)(22,40)(23,45)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,17)(14,16)(18,24)(19,23)(20,22)(25,35)(26,34)(27,33)(28,32)(29,31)>;
G:=Group( (1,48,5,40,9,44)(2,45,10,41,6,37)(3,38,7,42,11,46)(4,47,12,43,8,39)(13,30,17,34,21,26)(14,27,22,35,18,31)(15,32,19,36,23,28)(16,29,24,25,20,33), (1,31)(2,28)(3,33)(4,30)(5,35)(6,32)(7,25)(8,34)(9,27)(10,36)(11,29)(12,26)(13,47)(14,44)(15,37)(16,46)(17,39)(18,48)(19,41)(20,38)(21,43)(22,40)(23,45)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,17)(14,16)(18,24)(19,23)(20,22)(25,35)(26,34)(27,33)(28,32)(29,31) );
G=PermutationGroup([[(1,48,5,40,9,44),(2,45,10,41,6,37),(3,38,7,42,11,46),(4,47,12,43,8,39),(13,30,17,34,21,26),(14,27,22,35,18,31),(15,32,19,36,23,28),(16,29,24,25,20,33)], [(1,31),(2,28),(3,33),(4,30),(5,35),(6,32),(7,25),(8,34),(9,27),(10,36),(11,29),(12,26),(13,47),(14,44),(15,37),(16,46),(17,39),(18,48),(19,41),(20,38),(21,43),(22,40),(23,45),(24,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,48),(8,47),(9,46),(10,45),(11,44),(12,43),(13,17),(14,16),(18,24),(19,23),(20,22),(25,35),(26,34),(27,33),(28,32),(29,31)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 12O | 12P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 12 | 36 | 2 | 2 | 4 | 2 | 2 | 6 | 6 | 12 | 36 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 12 | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | C4○D4 | C3⋊D4 | D12 | C4○D12 | S32 | S3×D4 | C2×S32 | D6.D6 | S3×D12 | S3×C3⋊D4 |
kernel | D6⋊D12 | Dic3⋊Dic3 | C3×D6⋊C4 | C6.11D12 | C2×D6⋊S3 | C2×C3⋊D12 | S3×C2×C12 | D6⋊C4 | S3×C2×C4 | C3×Dic3 | S3×C6 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | Dic3 | D6 | C6 | C2×C4 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 1 | 2 | 1 | 2 | 2 | 2 |
Matrix representation of D6⋊D12 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
9 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[9,4,0,0,0,0,0,0,6,4,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[12,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
D6⋊D12 in GAP, Magma, Sage, TeX
D_6\rtimes D_{12}
% in TeX
G:=Group("D6:D12");
// GroupNames label
G:=SmallGroup(288,554);
// by ID
G=gap.SmallGroup(288,554);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,219,142,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^12=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^4*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations