Copied to
clipboard

G = A4×D13order 312 = 23·3·13

Direct product of A4 and D13

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D13, C133(C2×A4), (C2×C26)⋊1C6, C22⋊(C3×D13), (A4×C13)⋊2C2, (C22×D13)⋊1C3, SmallGroup(312,50)

Series: Derived Chief Lower central Upper central

C1C2×C26 — A4×D13
C1C13C2×C26A4×C13 — A4×D13
C2×C26 — A4×D13
C1

Generators and relations for A4×D13
 G = < a,b,c,d,e | a2=b2=c3=d13=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
13C2
39C2
4C3
39C22
39C22
52C6
3C26
3D13
4C39
13C23
3D26
3D26
4C3×D13
13C2×A4

Smallest permutation representation of A4×D13
On 52 points
Generators in S52
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 14)(11 15)(12 16)(13 17)(27 51)(28 52)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)
(1 36)(2 37)(3 38)(4 39)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 40)(25 41)(26 42)
(14 32 43)(15 33 44)(16 34 45)(17 35 46)(18 36 47)(19 37 48)(20 38 49)(21 39 50)(22 27 51)(23 28 52)(24 29 40)(25 30 41)(26 31 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 21)(15 20)(16 19)(17 18)(22 26)(23 25)(27 31)(28 30)(32 39)(33 38)(34 37)(35 36)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)

G:=sub<Sym(52)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50), (1,36)(2,37)(3,38)(4,39)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,40)(25,41)(26,42), (14,32,43)(15,33,44)(16,34,45)(17,35,46)(18,36,47)(19,37,48)(20,38,49)(21,39,50)(22,27,51)(23,28,52)(24,29,40)(25,30,41)(26,31,42), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,21)(15,20)(16,19)(17,18)(22,26)(23,25)(27,31)(28,30)(32,39)(33,38)(34,37)(35,36)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50), (1,36)(2,37)(3,38)(4,39)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,40)(25,41)(26,42), (14,32,43)(15,33,44)(16,34,45)(17,35,46)(18,36,47)(19,37,48)(20,38,49)(21,39,50)(22,27,51)(23,28,52)(24,29,40)(25,30,41)(26,31,42), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,21)(15,20)(16,19)(17,18)(22,26)(23,25)(27,31)(28,30)(32,39)(33,38)(34,37)(35,36)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,14),(11,15),(12,16),(13,17),(27,51),(28,52),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50)], [(1,36),(2,37),(3,38),(4,39),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,40),(25,41),(26,42)], [(14,32,43),(15,33,44),(16,34,45),(17,35,46),(18,36,47),(19,37,48),(20,38,49),(21,39,50),(22,27,51),(23,28,52),(24,29,40),(25,30,41),(26,31,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,21),(15,20),(16,19),(17,18),(22,26),(23,25),(27,31),(28,30),(32,39),(33,38),(34,37),(35,36),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47)]])

32 conjugacy classes

class 1 2A2B2C3A3B6A6B13A···13F26A···26F39A···39L
order1222336613···1326···2639···39
size1313394452522···26···68···8

32 irreducible representations

dim111122336
type++++++
imageC1C2C3C6D13C3×D13A4C2×A4A4×D13
kernelA4×D13A4×C13C22×D13C2×C26A4C22D13C13C1
# reps1122612116

Matrix representation of A4×D13 in GL5(𝔽79)

10000
01000
00010
00100
00787878
,
10000
01000
00001
00787878
00100
,
230000
023000
00100
00787878
00010
,
614000
7866000
00100
00010
00001
,
1913000
2760000
00100
00010
00001

G:=sub<GL(5,GF(79))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,78,0,0,1,0,78,0,0,0,0,78],[1,0,0,0,0,0,1,0,0,0,0,0,0,78,1,0,0,0,78,0,0,0,1,78,0],[23,0,0,0,0,0,23,0,0,0,0,0,1,78,0,0,0,0,78,1,0,0,0,78,0],[61,78,0,0,0,4,66,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[19,27,0,0,0,13,60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×D13 in GAP, Magma, Sage, TeX

A_4\times D_{13}
% in TeX

G:=Group("A4xD13");
// GroupNames label

G:=SmallGroup(312,50);
// by ID

G=gap.SmallGroup(312,50);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-13,142,68,7204]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^13=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D13 in TeX

׿
×
𝔽