Copied to
clipboard

G = D13⋊A4order 312 = 23·3·13

The semidirect product of D13 and A4 acting via A4/C22=C3

metabelian, soluble, monomial, A-group

Aliases: D13⋊A4, C13⋊A4⋊C2, C13⋊(C2×A4), (C2×C26)⋊2C6, C22⋊(C13⋊C6), (C22×D13)⋊2C3, SmallGroup(312,51)

Series: Derived Chief Lower central Upper central

C1C2×C26 — D13⋊A4
C1C13C2×C26C13⋊A4 — D13⋊A4
C2×C26 — D13⋊A4
C1

Generators and relations for D13⋊A4
 G = < a,b,c,d,e | a13=b2=c2=d2=e3=1, bab=a-1, ac=ca, ad=da, eae-1=a9, bc=cb, bd=db, ebe-1=a8b, ece-1=cd=dc, ede-1=c >

3C2
13C2
39C2
52C3
39C22
39C22
52C6
3C26
3D13
4C13⋊C3
13C23
13A4
3D26
3D26
4C13⋊C6
13C2×A4

Character table of D13⋊A4

 class 12A2B2C3A3B6A6B13A13B26A26B26C26D26E26F
 size 1313395252525266666666
ρ11111111111111111    trivial
ρ211-1-111-1-111111111    linear of order 2
ρ31111ζ32ζ3ζ3ζ3211111111    linear of order 3
ρ411-1-1ζ3ζ32ζ6ζ6511111111    linear of order 6
ρ511-1-1ζ32ζ3ζ65ζ611111111    linear of order 6
ρ61111ζ3ζ32ζ32ζ311111111    linear of order 3
ρ73-1-31000033-1-1-1-1-1-1    orthogonal lifted from C2×A4
ρ83-13-1000033-1-1-1-1-1-1    orthogonal lifted from A4
ρ966000000-1+13/2-1-13/2-1-13/2-1-13/2-1+13/2-1-13/2-1+13/2-1+13/2    orthogonal lifted from C13⋊C6
ρ106-2000000-1+13/2-1-13/213111381371361351321311138137136135132ζ1312131013913413313ζ131113813713613513213121310139134133131312131013913413313    orthogonal faithful
ρ116-2000000-1-13/2-1+13/21312131013913413313ζ1312131013913413313ζ1311138137136135132131213101391341331313111381371361351321311138137136135132    orthogonal faithful
ρ126-2000000-1-13/2-1+13/2131213101391341331313121310139134133131311138137136135132ζ13121310139134133131311138137136135132ζ1311138137136135132    orthogonal faithful
ρ136-2000000-1+13/2-1-13/21311138137136135132ζ131113813713613513213121310139134133131311138137136135132ζ13121310139134133131312131013913413313    orthogonal faithful
ρ146-2000000-1+13/2-1-13/2ζ13111381371361351321311138137136135132131213101391341331313111381371361351321312131013913413313ζ1312131013913413313    orthogonal faithful
ρ156-2000000-1-13/2-1+13/2ζ1312131013913413313131213101391341331313111381371361351321312131013913413313ζ13111381371361351321311138137136135132    orthogonal faithful
ρ1666000000-1-13/2-1+13/2-1+13/2-1+13/2-1-13/2-1+13/2-1-13/2-1-13/2    orthogonal lifted from C13⋊C6

Smallest permutation representation of D13⋊A4
On 52 points
Generators in S52
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 22)(15 21)(16 20)(17 19)(23 26)(24 25)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(40 49)(41 48)(42 47)(43 46)(44 45)(50 52)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)
(1 25)(2 26)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(27 52)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(14 51 38)(15 41 34)(16 44 30)(17 47 39)(18 50 35)(19 40 31)(20 43 27)(21 46 36)(22 49 32)(23 52 28)(24 42 37)(25 45 33)(26 48 29)

G:=sub<Sym(52)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,49)(41,48)(42,47)(43,46)(44,45)(50,52), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46), (1,25)(2,26)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(14,51,38)(15,41,34)(16,44,30)(17,47,39)(18,50,35)(19,40,31)(20,43,27)(21,46,36)(22,49,32)(23,52,28)(24,42,37)(25,45,33)(26,48,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,49)(41,48)(42,47)(43,46)(44,45)(50,52), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46), (1,25)(2,26)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(14,51,38)(15,41,34)(16,44,30)(17,47,39)(18,50,35)(19,40,31)(20,43,27)(21,46,36)(22,49,32)(23,52,28)(24,42,37)(25,45,33)(26,48,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,22),(15,21),(16,20),(17,19),(23,26),(24,25),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(40,49),(41,48),(42,47),(43,46),(44,45),(50,52)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46)], [(1,25),(2,26),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(27,52),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(14,51,38),(15,41,34),(16,44,30),(17,47,39),(18,50,35),(19,40,31),(20,43,27),(21,46,36),(22,49,32),(23,52,28),(24,42,37),(25,45,33),(26,48,29)]])

Matrix representation of D13⋊A4 in GL6(𝔽79)

1610000
6201000
1800100
6100010
1700001
627878787878
,
77777814013
161716787815
64636321765
17171778620
777777151714
111646264
,
37077242477
533934113758
27426684524
057744757
772243662472
26563376065
,
160113311
8550312353
683460482978
0697477469
111040597145
714515234276
,
16001620
620061621
181019330
610045450
167878321878
630162610

G:=sub<GL(6,GF(79))| [16,62,18,61,17,62,1,0,0,0,0,78,0,1,0,0,0,78,0,0,1,0,0,78,0,0,0,1,0,78,0,0,0,0,1,78],[77,16,64,17,77,1,77,17,63,17,77,1,78,16,63,17,77,1,14,78,2,78,15,64,0,78,17,62,17,62,13,15,65,0,14,64],[37,53,2,0,77,26,0,39,74,57,22,5,77,34,26,7,43,63,24,11,68,44,66,37,24,37,45,7,24,60,77,58,24,57,72,65],[16,8,68,0,11,71,0,5,34,69,10,45,11,50,60,74,40,15,3,31,48,7,59,23,3,23,29,74,71,42,11,53,78,69,45,76],[16,62,18,61,16,63,0,0,1,0,78,0,0,0,0,0,78,1,16,61,19,45,32,62,2,62,33,45,18,61,0,1,0,0,78,0] >;

D13⋊A4 in GAP, Magma, Sage, TeX

D_{13}\rtimes A_4
% in TeX

G:=Group("D13:A4");
// GroupNames label

G:=SmallGroup(312,51);
// by ID

G=gap.SmallGroup(312,51);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-13,97,188,7204,909]);
// Polycyclic

G:=Group<a,b,c,d,e|a^13=b^2=c^2=d^2=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^9,b*c=c*b,b*d=d*b,e*b*e^-1=a^8*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of D13⋊A4 in TeX
Character table of D13⋊A4 in TeX

׿
×
𝔽