metabelian, soluble, monomial, A-group
Aliases: D13⋊A4, C13⋊A4⋊C2, C13⋊(C2×A4), (C2×C26)⋊2C6, C22⋊(C13⋊C6), (C22×D13)⋊2C3, SmallGroup(312,51)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C2×C26 — C13⋊A4 — D13⋊A4 |
C2×C26 — D13⋊A4 |
Generators and relations for D13⋊A4
G = < a,b,c,d,e | a13=b2=c2=d2=e3=1, bab=a-1, ac=ca, ad=da, eae-1=a9, bc=cb, bd=db, ebe-1=a8b, ece-1=cd=dc, ede-1=c >
Character table of D13⋊A4
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 13A | 13B | 26A | 26B | 26C | 26D | 26E | 26F | |
size | 1 | 3 | 13 | 39 | 52 | 52 | 52 | 52 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 3 | -1 | -3 | 1 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from C2×A4 |
ρ8 | 3 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ9 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | orthogonal lifted from C13⋊C6 |
ρ10 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | orthogonal faithful |
ρ11 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | orthogonal faithful |
ρ12 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | orthogonal faithful |
ρ13 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | orthogonal faithful |
ρ14 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | orthogonal faithful |
ρ15 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | ζ1312-ζ1310-ζ139-ζ134-ζ133+ζ13 | -ζ1312-ζ1310+ζ139+ζ134-ζ133-ζ13 | -ζ1311+ζ138-ζ137-ζ136+ζ135-ζ132 | -ζ1312+ζ1310-ζ139-ζ134+ζ133-ζ13 | ζ1311-ζ138-ζ137-ζ136-ζ135+ζ132 | -ζ1311-ζ138+ζ137+ζ136-ζ135-ζ132 | orthogonal faithful |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | orthogonal lifted from C13⋊C6 |
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 22)(15 21)(16 20)(17 19)(23 26)(24 25)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(40 49)(41 48)(42 47)(43 46)(44 45)(50 52)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)
(1 25)(2 26)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(27 52)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(14 51 38)(15 41 34)(16 44 30)(17 47 39)(18 50 35)(19 40 31)(20 43 27)(21 46 36)(22 49 32)(23 52 28)(24 42 37)(25 45 33)(26 48 29)
G:=sub<Sym(52)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,49)(41,48)(42,47)(43,46)(44,45)(50,52), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46), (1,25)(2,26)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(14,51,38)(15,41,34)(16,44,30)(17,47,39)(18,50,35)(19,40,31)(20,43,27)(21,46,36)(22,49,32)(23,52,28)(24,42,37)(25,45,33)(26,48,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,49)(41,48)(42,47)(43,46)(44,45)(50,52), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46), (1,25)(2,26)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(14,51,38)(15,41,34)(16,44,30)(17,47,39)(18,50,35)(19,40,31)(20,43,27)(21,46,36)(22,49,32)(23,52,28)(24,42,37)(25,45,33)(26,48,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,22),(15,21),(16,20),(17,19),(23,26),(24,25),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(40,49),(41,48),(42,47),(43,46),(44,45),(50,52)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46)], [(1,25),(2,26),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(27,52),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(14,51,38),(15,41,34),(16,44,30),(17,47,39),(18,50,35),(19,40,31),(20,43,27),(21,46,36),(22,49,32),(23,52,28),(24,42,37),(25,45,33),(26,48,29)]])
Matrix representation of D13⋊A4 ►in GL6(𝔽79)
16 | 1 | 0 | 0 | 0 | 0 |
62 | 0 | 1 | 0 | 0 | 0 |
18 | 0 | 0 | 1 | 0 | 0 |
61 | 0 | 0 | 0 | 1 | 0 |
17 | 0 | 0 | 0 | 0 | 1 |
62 | 78 | 78 | 78 | 78 | 78 |
77 | 77 | 78 | 14 | 0 | 13 |
16 | 17 | 16 | 78 | 78 | 15 |
64 | 63 | 63 | 2 | 17 | 65 |
17 | 17 | 17 | 78 | 62 | 0 |
77 | 77 | 77 | 15 | 17 | 14 |
1 | 1 | 1 | 64 | 62 | 64 |
37 | 0 | 77 | 24 | 24 | 77 |
53 | 39 | 34 | 11 | 37 | 58 |
2 | 74 | 26 | 68 | 45 | 24 |
0 | 57 | 7 | 44 | 7 | 57 |
77 | 22 | 43 | 66 | 24 | 72 |
26 | 5 | 63 | 37 | 60 | 65 |
16 | 0 | 11 | 3 | 3 | 11 |
8 | 5 | 50 | 31 | 23 | 53 |
68 | 34 | 60 | 48 | 29 | 78 |
0 | 69 | 74 | 7 | 74 | 69 |
11 | 10 | 40 | 59 | 71 | 45 |
71 | 45 | 15 | 23 | 42 | 76 |
16 | 0 | 0 | 16 | 2 | 0 |
62 | 0 | 0 | 61 | 62 | 1 |
18 | 1 | 0 | 19 | 33 | 0 |
61 | 0 | 0 | 45 | 45 | 0 |
16 | 78 | 78 | 32 | 18 | 78 |
63 | 0 | 1 | 62 | 61 | 0 |
G:=sub<GL(6,GF(79))| [16,62,18,61,17,62,1,0,0,0,0,78,0,1,0,0,0,78,0,0,1,0,0,78,0,0,0,1,0,78,0,0,0,0,1,78],[77,16,64,17,77,1,77,17,63,17,77,1,78,16,63,17,77,1,14,78,2,78,15,64,0,78,17,62,17,62,13,15,65,0,14,64],[37,53,2,0,77,26,0,39,74,57,22,5,77,34,26,7,43,63,24,11,68,44,66,37,24,37,45,7,24,60,77,58,24,57,72,65],[16,8,68,0,11,71,0,5,34,69,10,45,11,50,60,74,40,15,3,31,48,7,59,23,3,23,29,74,71,42,11,53,78,69,45,76],[16,62,18,61,16,63,0,0,1,0,78,0,0,0,0,0,78,1,16,61,19,45,32,62,2,62,33,45,18,61,0,1,0,0,78,0] >;
D13⋊A4 in GAP, Magma, Sage, TeX
D_{13}\rtimes A_4
% in TeX
G:=Group("D13:A4");
// GroupNames label
G:=SmallGroup(312,51);
// by ID
G=gap.SmallGroup(312,51);
# by ID
G:=PCGroup([5,-2,-3,-2,2,-13,97,188,7204,909]);
// Polycyclic
G:=Group<a,b,c,d,e|a^13=b^2=c^2=d^2=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^9,b*c=c*b,b*d=d*b,e*b*e^-1=a^8*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of D13⋊A4 in TeX
Character table of D13⋊A4 in TeX