Copied to
clipboard

G = C15×F5order 300 = 22·3·52

Direct product of C15 and F5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C15×F5, C5⋊C60, D5.C30, C152C20, C523C12, (C5×C15)⋊5C4, (C5×D5).1C6, (C3×D5).2C10, (D5×C15).1C2, SmallGroup(300,28)

Series: Derived Chief Lower central Upper central

C1C5 — C15×F5
C1C5D5C5×D5D5×C15 — C15×F5
C5 — C15×F5
C1C15

Generators and relations for C15×F5
 G = < a,b,c | a15=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

5C2
4C5
5C4
5C6
5C10
4C15
5C12
5C20
5C30
5C60

Smallest permutation representation of C15×F5
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 4 7 10 13)(2 5 8 11 14)(3 6 9 12 15)(16 25 19 28 22)(17 26 20 29 23)(18 27 21 30 24)(31 37 43 34 40)(32 38 44 35 41)(33 39 45 36 42)(46 58 55 52 49)(47 59 56 53 50)(48 60 57 54 51)
(1 29 59 35)(2 30 60 36)(3 16 46 37)(4 17 47 38)(5 18 48 39)(6 19 49 40)(7 20 50 41)(8 21 51 42)(9 22 52 43)(10 23 53 44)(11 24 54 45)(12 25 55 31)(13 26 56 32)(14 27 57 33)(15 28 58 34)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24)(31,37,43,34,40)(32,38,44,35,41)(33,39,45,36,42)(46,58,55,52,49)(47,59,56,53,50)(48,60,57,54,51), (1,29,59,35)(2,30,60,36)(3,16,46,37)(4,17,47,38)(5,18,48,39)(6,19,49,40)(7,20,50,41)(8,21,51,42)(9,22,52,43)(10,23,53,44)(11,24,54,45)(12,25,55,31)(13,26,56,32)(14,27,57,33)(15,28,58,34)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24)(31,37,43,34,40)(32,38,44,35,41)(33,39,45,36,42)(46,58,55,52,49)(47,59,56,53,50)(48,60,57,54,51), (1,29,59,35)(2,30,60,36)(3,16,46,37)(4,17,47,38)(5,18,48,39)(6,19,49,40)(7,20,50,41)(8,21,51,42)(9,22,52,43)(10,23,53,44)(11,24,54,45)(12,25,55,31)(13,26,56,32)(14,27,57,33)(15,28,58,34) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,4,7,10,13),(2,5,8,11,14),(3,6,9,12,15),(16,25,19,28,22),(17,26,20,29,23),(18,27,21,30,24),(31,37,43,34,40),(32,38,44,35,41),(33,39,45,36,42),(46,58,55,52,49),(47,59,56,53,50),(48,60,57,54,51)], [(1,29,59,35),(2,30,60,36),(3,16,46,37),(4,17,47,38),(5,18,48,39),(6,19,49,40),(7,20,50,41),(8,21,51,42),(9,22,52,43),(10,23,53,44),(11,24,54,45),(12,25,55,31),(13,26,56,32),(14,27,57,33),(15,28,58,34)]])

75 conjugacy classes

class 1  2 3A3B4A4B5A5B5C5D5E···5I6A6B10A10B10C10D12A12B12C12D15A···15H15I···15R20A···20H30A···30H60A···60P
order12334455555···566101010101212121215···1515···1520···2030···3060···60
size15115511114···455555555551···14···45···55···55···5

75 irreducible representations

dim1111111111114444
type+++
imageC1C2C3C4C5C6C10C12C15C20C30C60F5C3×F5C5×F5C15×F5
kernelC15×F5D5×C15C5×F5C5×C15C3×F5C5×D5C3×D5C52F5C15D5C5C15C5C3C1
# reps11224244888161248

Matrix representation of C15×F5 in GL4(𝔽61) generated by

22000
02200
00220
00022
,
340031
09041
00583
00020
,
1010
1000
60100
330060
G:=sub<GL(4,GF(61))| [22,0,0,0,0,22,0,0,0,0,22,0,0,0,0,22],[34,0,0,0,0,9,0,0,0,0,58,0,31,41,3,20],[1,1,60,33,0,0,1,0,1,0,0,0,0,0,0,60] >;

C15×F5 in GAP, Magma, Sage, TeX

C_{15}\times F_5
% in TeX

G:=Group("C15xF5");
// GroupNames label

G:=SmallGroup(300,28);
// by ID

G=gap.SmallGroup(300,28);
# by ID

G:=PCGroup([5,-2,-3,-5,-2,-5,150,3004,219]);
// Polycyclic

G:=Group<a,b,c|a^15=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C15×F5 in TeX

׿
×
𝔽