direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×D13, D39⋊C2, C3⋊1D26, C13⋊1D6, C39⋊C22, (S3×C13)⋊C2, (C3×D13)⋊C2, SmallGroup(156,11)
Series: Derived ►Chief ►Lower central ►Upper central
C39 — S3×D13 |
Generators and relations for S3×D13
G = < a,b,c,d | a3=b2=c13=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D13
class | 1 | 2A | 2B | 2C | 3 | 6 | 13A | 13B | 13C | 13D | 13E | 13F | 26A | 26B | 26C | 26D | 26E | 26F | 39A | 39B | 39C | 39D | 39E | 39F | |
size | 1 | 3 | 13 | 39 | 2 | 26 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | -1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 0 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 0 | ζ137+ζ136 | ζ1312+ζ13 | ζ138+ζ135 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | ζ1312+ζ13 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | orthogonal lifted from D13 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 0 | ζ137+ζ136 | ζ1312+ζ13 | ζ138+ζ135 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | -ζ139-ζ134 | -ζ138-ζ135 | -ζ1310-ζ133 | -ζ1311-ζ132 | -ζ137-ζ136 | -ζ1312-ζ13 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | orthogonal lifted from D26 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1310+ζ133 | ζ137+ζ136 | ζ139+ζ134 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | ζ137+ζ136 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | orthogonal lifted from D13 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 0 | ζ138+ζ135 | ζ1310+ζ133 | ζ1311+ζ132 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | ζ1310+ζ133 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | orthogonal lifted from D13 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 0 | ζ139+ζ134 | ζ138+ζ135 | ζ1312+ζ13 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | -ζ137-ζ136 | -ζ1312-ζ13 | -ζ1311-ζ132 | -ζ1310-ζ133 | -ζ139-ζ134 | -ζ138-ζ135 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | orthogonal lifted from D26 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | ζ138+ζ135 | ζ1310+ζ133 | ζ1311+ζ132 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | -ζ1312-ζ13 | -ζ1311-ζ132 | -ζ139-ζ134 | -ζ137-ζ136 | -ζ138-ζ135 | -ζ1310-ζ133 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | orthogonal lifted from D26 |
ρ13 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1310+ζ133 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | orthogonal lifted from D13 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1311+ζ132 | ζ139+ζ134 | ζ137+ζ136 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | -ζ1310-ζ133 | -ζ137-ζ136 | -ζ1312-ζ13 | -ζ138-ζ135 | -ζ1311-ζ132 | -ζ139-ζ134 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | orthogonal lifted from D26 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 0 | ζ139+ζ134 | ζ138+ζ135 | ζ1312+ζ13 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | ζ138+ζ135 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | orthogonal lifted from D13 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1311+ζ132 | ζ139+ζ134 | ζ137+ζ136 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | ζ139+ζ134 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | orthogonal lifted from D13 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1310+ζ133 | ζ137+ζ136 | ζ139+ζ134 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | -ζ1311-ζ132 | -ζ139-ζ134 | -ζ138-ζ135 | -ζ1312-ζ13 | -ζ1310-ζ133 | -ζ137-ζ136 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | orthogonal lifted from D26 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1312+ζ13 | ζ1311+ζ132 | ζ1310+ζ133 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | -ζ138-ζ135 | -ζ1310-ζ133 | -ζ137-ζ136 | -ζ139-ζ134 | -ζ1312-ζ13 | -ζ1311-ζ132 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | orthogonal lifted from D26 |
ρ19 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ137+2ζ136 | 2ζ1312+2ζ13 | 2ζ138+2ζ135 | 2ζ1310+2ζ133 | 2ζ139+2ζ134 | 2ζ1311+2ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1312-ζ13 | -ζ139-ζ134 | -ζ138-ζ135 | -ζ1310-ζ133 | -ζ1311-ζ132 | -ζ137-ζ136 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1311+2ζ132 | 2ζ139+2ζ134 | 2ζ137+2ζ136 | 2ζ1312+2ζ13 | 2ζ1310+2ζ133 | 2ζ138+2ζ135 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ139-ζ134 | -ζ1310-ζ133 | -ζ137-ζ136 | -ζ1312-ζ13 | -ζ138-ζ135 | -ζ1311-ζ132 | orthogonal faithful |
ρ21 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1310+2ζ133 | 2ζ137+2ζ136 | 2ζ139+2ζ134 | 2ζ138+2ζ135 | 2ζ1311+2ζ132 | 2ζ1312+2ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ137-ζ136 | -ζ1311-ζ132 | -ζ139-ζ134 | -ζ138-ζ135 | -ζ1312-ζ13 | -ζ1310-ζ133 | orthogonal faithful |
ρ22 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ139+2ζ134 | 2ζ138+2ζ135 | 2ζ1312+2ζ13 | 2ζ1311+2ζ132 | 2ζ137+2ζ136 | 2ζ1310+2ζ133 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ138-ζ135 | -ζ137-ζ136 | -ζ1312-ζ13 | -ζ1311-ζ132 | -ζ1310-ζ133 | -ζ139-ζ134 | orthogonal faithful |
ρ23 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ138+2ζ135 | 2ζ1310+2ζ133 | 2ζ1311+2ζ132 | 2ζ139+2ζ134 | 2ζ1312+2ζ13 | 2ζ137+2ζ136 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1310-ζ133 | -ζ1312-ζ13 | -ζ1311-ζ132 | -ζ139-ζ134 | -ζ137-ζ136 | -ζ138-ζ135 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1312+2ζ13 | 2ζ1311+2ζ132 | 2ζ1310+2ζ133 | 2ζ137+2ζ136 | 2ζ138+2ζ135 | 2ζ139+2ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1311-ζ132 | -ζ138-ζ135 | -ζ1310-ζ133 | -ζ137-ζ136 | -ζ139-ζ134 | -ζ1312-ζ13 | orthogonal faithful |
(1 21 27)(2 22 28)(3 23 29)(4 24 30)(5 25 31)(6 26 32)(7 14 33)(8 15 34)(9 16 35)(10 17 36)(11 18 37)(12 19 38)(13 20 39)
(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 27)(22 28)(23 29)(24 30)(25 31)(26 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)
G:=sub<Sym(39)| (1,21,27)(2,22,28)(3,23,29)(4,24,30)(5,25,31)(6,26,32)(7,14,33)(8,15,34)(9,16,35)(10,17,36)(11,18,37)(12,19,38)(13,20,39), (14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)>;
G:=Group( (1,21,27)(2,22,28)(3,23,29)(4,24,30)(5,25,31)(6,26,32)(7,14,33)(8,15,34)(9,16,35)(10,17,36)(11,18,37)(12,19,38)(13,20,39), (14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34) );
G=PermutationGroup([[(1,21,27),(2,22,28),(3,23,29),(4,24,30),(5,25,31),(6,26,32),(7,14,33),(8,15,34),(9,16,35),(10,17,36),(11,18,37),(12,19,38),(13,20,39)], [(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,27),(22,28),(23,29),(24,30),(25,31),(26,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34)]])
S3×D13 is a maximal subgroup of
D39⋊S3
S3×D13 is a maximal quotient of D78.C2 C39⋊D4 C3⋊D52 C13⋊D12 C39⋊Q8 D39⋊S3
Matrix representation of S3×D13 ►in GL4(𝔽79) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 77 | 9 |
0 | 0 | 26 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 53 | 78 |
39 | 1 | 0 | 0 |
13 | 51 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
26 | 38 | 0 | 0 |
55 | 53 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(79))| [1,0,0,0,0,1,0,0,0,0,77,26,0,0,9,1],[1,0,0,0,0,1,0,0,0,0,1,53,0,0,0,78],[39,13,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[26,55,0,0,38,53,0,0,0,0,1,0,0,0,0,1] >;
S3×D13 in GAP, Magma, Sage, TeX
S_3\times D_{13}
% in TeX
G:=Group("S3xD13");
// GroupNames label
G:=SmallGroup(156,11);
// by ID
G=gap.SmallGroup(156,11);
# by ID
G:=PCGroup([4,-2,-2,-3,-13,54,2307]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^13=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D13 in TeX
Character table of S3×D13 in TeX