Copied to
clipboard

G = S3×D13order 156 = 22·3·13

Direct product of S3 and D13

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D13, D39⋊C2, C31D26, C131D6, C39⋊C22, (S3×C13)⋊C2, (C3×D13)⋊C2, SmallGroup(156,11)

Series: Derived Chief Lower central Upper central

C1C39 — S3×D13
C1C13C39C3×D13 — S3×D13
C39 — S3×D13
C1

Generators and relations for S3×D13
 G = < a,b,c,d | a3=b2=c13=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
13C2
39C2
39C22
13C6
13S3
3C26
3D13
13D6
3D26

Character table of S3×D13

 class 12A2B2C3613A13B13C13D13E13F26A26B26C26D26E26F39A39B39C39D39E39F
 size 131339226222222666666444444
ρ1111111111111111111111111    trivial
ρ21-1-111-1111111-1-1-1-1-1-1111111    linear of order 2
ρ31-11-111111111-1-1-1-1-1-1111111    linear of order 2
ρ411-1-11-1111111111111111111    linear of order 2
ρ520-20-11222222000000-1-1-1-1-1-1    orthogonal lifted from D6
ρ62020-1-1222222000000-1-1-1-1-1-1    orthogonal lifted from S3
ρ7220020ζ137136ζ131213ζ138135ζ1310133ζ139134ζ1311132ζ139134ζ138135ζ1310133ζ1311132ζ137136ζ131213ζ131213ζ139134ζ138135ζ1310133ζ1311132ζ137136    orthogonal lifted from D13
ρ82-20020ζ137136ζ131213ζ138135ζ1310133ζ139134ζ131113213913413813513101331311132137136131213ζ131213ζ139134ζ138135ζ1310133ζ1311132ζ137136    orthogonal lifted from D26
ρ9220020ζ1310133ζ137136ζ139134ζ138135ζ1311132ζ131213ζ1311132ζ139134ζ138135ζ131213ζ1310133ζ137136ζ137136ζ1311132ζ139134ζ138135ζ131213ζ1310133    orthogonal lifted from D13
ρ10220020ζ138135ζ1310133ζ1311132ζ139134ζ131213ζ137136ζ131213ζ1311132ζ139134ζ137136ζ138135ζ1310133ζ1310133ζ131213ζ1311132ζ139134ζ137136ζ138135    orthogonal lifted from D13
ρ112-20020ζ139134ζ138135ζ131213ζ1311132ζ137136ζ131013313713613121313111321310133139134138135ζ138135ζ137136ζ131213ζ1311132ζ1310133ζ139134    orthogonal lifted from D26
ρ122-20020ζ138135ζ1310133ζ1311132ζ139134ζ131213ζ13713613121313111321391341371361381351310133ζ1310133ζ131213ζ1311132ζ139134ζ137136ζ138135    orthogonal lifted from D26
ρ13220020ζ131213ζ1311132ζ1310133ζ137136ζ138135ζ139134ζ138135ζ1310133ζ137136ζ139134ζ131213ζ1311132ζ1311132ζ138135ζ1310133ζ137136ζ139134ζ131213    orthogonal lifted from D13
ρ142-20020ζ1311132ζ139134ζ137136ζ131213ζ1310133ζ13813513101331371361312131381351311132139134ζ139134ζ1310133ζ137136ζ131213ζ138135ζ1311132    orthogonal lifted from D26
ρ15220020ζ139134ζ138135ζ131213ζ1311132ζ137136ζ1310133ζ137136ζ131213ζ1311132ζ1310133ζ139134ζ138135ζ138135ζ137136ζ131213ζ1311132ζ1310133ζ139134    orthogonal lifted from D13
ρ16220020ζ1311132ζ139134ζ137136ζ131213ζ1310133ζ138135ζ1310133ζ137136ζ131213ζ138135ζ1311132ζ139134ζ139134ζ1310133ζ137136ζ131213ζ138135ζ1311132    orthogonal lifted from D13
ρ172-20020ζ1310133ζ137136ζ139134ζ138135ζ1311132ζ13121313111321391341381351312131310133137136ζ137136ζ1311132ζ139134ζ138135ζ131213ζ1310133    orthogonal lifted from D26
ρ182-20020ζ131213ζ1311132ζ1310133ζ137136ζ138135ζ13913413813513101331371361391341312131311132ζ1311132ζ138135ζ1310133ζ137136ζ139134ζ131213    orthogonal lifted from D26
ρ194000-20137+2ζ1361312+2ζ13138+2ζ1351310+2ζ133139+2ζ1341311+2ζ13200000013121313913413813513101331311132137136    orthogonal faithful
ρ204000-201311+2ζ132139+2ζ134137+2ζ1361312+2ζ131310+2ζ133138+2ζ13500000013913413101331371361312131381351311132    orthogonal faithful
ρ214000-201310+2ζ133137+2ζ136139+2ζ134138+2ζ1351311+2ζ1321312+2ζ1300000013713613111321391341381351312131310133    orthogonal faithful
ρ224000-20139+2ζ134138+2ζ1351312+2ζ131311+2ζ132137+2ζ1361310+2ζ13300000013813513713613121313111321310133139134    orthogonal faithful
ρ234000-20138+2ζ1351310+2ζ1331311+2ζ132139+2ζ1341312+2ζ13137+2ζ13600000013101331312131311132139134137136138135    orthogonal faithful
ρ244000-201312+2ζ131311+2ζ1321310+2ζ133137+2ζ136138+2ζ135139+2ζ13400000013111321381351310133137136139134131213    orthogonal faithful

Smallest permutation representation of S3×D13
On 39 points
Generators in S39
(1 21 27)(2 22 28)(3 23 29)(4 24 30)(5 25 31)(6 26 32)(7 14 33)(8 15 34)(9 16 35)(10 17 36)(11 18 37)(12 19 38)(13 20 39)
(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 27)(22 28)(23 29)(24 30)(25 31)(26 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)

G:=sub<Sym(39)| (1,21,27)(2,22,28)(3,23,29)(4,24,30)(5,25,31)(6,26,32)(7,14,33)(8,15,34)(9,16,35)(10,17,36)(11,18,37)(12,19,38)(13,20,39), (14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)>;

G:=Group( (1,21,27)(2,22,28)(3,23,29)(4,24,30)(5,25,31)(6,26,32)(7,14,33)(8,15,34)(9,16,35)(10,17,36)(11,18,37)(12,19,38)(13,20,39), (14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34) );

G=PermutationGroup([[(1,21,27),(2,22,28),(3,23,29),(4,24,30),(5,25,31),(6,26,32),(7,14,33),(8,15,34),(9,16,35),(10,17,36),(11,18,37),(12,19,38),(13,20,39)], [(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,27),(22,28),(23,29),(24,30),(25,31),(26,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34)]])

S3×D13 is a maximal subgroup of   D39⋊S3
S3×D13 is a maximal quotient of   D78.C2  C39⋊D4  C3⋊D52  C13⋊D12  C39⋊Q8  D39⋊S3

Matrix representation of S3×D13 in GL4(𝔽79) generated by

1000
0100
00779
00261
,
1000
0100
0010
005378
,
39100
135100
0010
0001
,
263800
555300
0010
0001
G:=sub<GL(4,GF(79))| [1,0,0,0,0,1,0,0,0,0,77,26,0,0,9,1],[1,0,0,0,0,1,0,0,0,0,1,53,0,0,0,78],[39,13,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[26,55,0,0,38,53,0,0,0,0,1,0,0,0,0,1] >;

S3×D13 in GAP, Magma, Sage, TeX

S_3\times D_{13}
% in TeX

G:=Group("S3xD13");
// GroupNames label

G:=SmallGroup(156,11);
// by ID

G=gap.SmallGroup(156,11);
# by ID

G:=PCGroup([4,-2,-2,-3,-13,54,2307]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^13=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D13 in TeX
Character table of S3×D13 in TeX

׿
×
𝔽