direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C6×C13⋊C4, C78⋊2C4, C26⋊3C12, D13⋊3C12, D26.3C6, C39⋊3(C2×C4), C13⋊4(C2×C12), (C3×D13)⋊3C4, D13.2(C2×C6), (C6×D13).3C2, (C3×D13).3C22, SmallGroup(312,52)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — D13 — C3×D13 — C3×C13⋊C4 — C6×C13⋊C4 |
C13 — C6×C13⋊C4 |
Generators and relations for C6×C13⋊C4
G = < a,b,c | a6=b13=c4=1, ab=ba, ac=ca, cbc-1=b5 >
(1 53 27 40 14 66)(2 54 28 41 15 67)(3 55 29 42 16 68)(4 56 30 43 17 69)(5 57 31 44 18 70)(6 58 32 45 19 71)(7 59 33 46 20 72)(8 60 34 47 21 73)(9 61 35 48 22 74)(10 62 36 49 23 75)(11 63 37 50 24 76)(12 64 38 51 25 77)(13 65 39 52 26 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(15 22 26 19)(16 17 25 24)(18 20 23 21)(28 35 39 32)(29 30 38 37)(31 33 36 34)(41 48 52 45)(42 43 51 50)(44 46 49 47)(54 61 65 58)(55 56 64 63)(57 59 62 60)(67 74 78 71)(68 69 77 76)(70 72 75 73)
G:=sub<Sym(78)| (1,53,27,40,14,66)(2,54,28,41,15,67)(3,55,29,42,16,68)(4,56,30,43,17,69)(5,57,31,44,18,70)(6,58,32,45,19,71)(7,59,33,46,20,72)(8,60,34,47,21,73)(9,61,35,48,22,74)(10,62,36,49,23,75)(11,63,37,50,24,76)(12,64,38,51,25,77)(13,65,39,52,26,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)(41,48,52,45)(42,43,51,50)(44,46,49,47)(54,61,65,58)(55,56,64,63)(57,59,62,60)(67,74,78,71)(68,69,77,76)(70,72,75,73)>;
G:=Group( (1,53,27,40,14,66)(2,54,28,41,15,67)(3,55,29,42,16,68)(4,56,30,43,17,69)(5,57,31,44,18,70)(6,58,32,45,19,71)(7,59,33,46,20,72)(8,60,34,47,21,73)(9,61,35,48,22,74)(10,62,36,49,23,75)(11,63,37,50,24,76)(12,64,38,51,25,77)(13,65,39,52,26,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)(41,48,52,45)(42,43,51,50)(44,46,49,47)(54,61,65,58)(55,56,64,63)(57,59,62,60)(67,74,78,71)(68,69,77,76)(70,72,75,73) );
G=PermutationGroup([[(1,53,27,40,14,66),(2,54,28,41,15,67),(3,55,29,42,16,68),(4,56,30,43,17,69),(5,57,31,44,18,70),(6,58,32,45,19,71),(7,59,33,46,20,72),(8,60,34,47,21,73),(9,61,35,48,22,74),(10,62,36,49,23,75),(11,63,37,50,24,76),(12,64,38,51,25,77),(13,65,39,52,26,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(15,22,26,19),(16,17,25,24),(18,20,23,21),(28,35,39,32),(29,30,38,37),(31,33,36,34),(41,48,52,45),(42,43,51,50),(44,46,49,47),(54,61,65,58),(55,56,64,63),(57,59,62,60),(67,74,78,71),(68,69,77,76),(70,72,75,73)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 12A | ··· | 12H | 13A | 13B | 13C | 26A | 26B | 26C | 39A | ··· | 39F | 78A | ··· | 78F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 13 | 13 | 13 | 26 | 26 | 26 | 39 | ··· | 39 | 78 | ··· | 78 |
size | 1 | 1 | 13 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | ··· | 13 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | C13⋊C4 | C2×C13⋊C4 | C3×C13⋊C4 | C6×C13⋊C4 |
kernel | C6×C13⋊C4 | C3×C13⋊C4 | C6×D13 | C2×C13⋊C4 | C3×D13 | C78 | C13⋊C4 | D26 | D13 | C26 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 3 | 3 | 6 | 6 |
Matrix representation of C6×C13⋊C4 ►in GL5(𝔽157)
145 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 20 | 52 | 20 | 156 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
156 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 137 | 85 | 118 | 138 |
0 | 52 | 39 | 71 | 19 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(157))| [145,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,20,1,0,0,0,52,0,1,0,0,20,0,0,1,0,156,0,0,0],[156,0,0,0,0,0,1,137,52,0,0,0,85,39,0,0,0,118,71,1,0,0,138,19,0] >;
C6×C13⋊C4 in GAP, Magma, Sage, TeX
C_6\times C_{13}\rtimes C_4
% in TeX
G:=Group("C6xC13:C4");
// GroupNames label
G:=SmallGroup(312,52);
// by ID
G=gap.SmallGroup(312,52);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-13,60,4804,619]);
// Polycyclic
G:=Group<a,b,c|a^6=b^13=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export