Extensions 1→N→G→Q→1 with N=D5×C16 and Q=C2

Direct product G=N×Q with N=D5×C16 and Q=C2
dρLabelID
D5×C2×C16160D5xC2xC16320,526

Semidirect products G=N:Q with N=D5×C16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C16)⋊1C2 = D5×D16φ: C2/C1C2 ⊆ Out D5×C16804+(D5xC16):1C2320,537
(D5×C16)⋊2C2 = D163D5φ: C2/C1C2 ⊆ Out D5×C161604-(D5xC16):2C2320,539
(D5×C16)⋊3C2 = D805C2φ: C2/C1C2 ⊆ Out D5×C161604+(D5xC16):3C2320,546
(D5×C16)⋊4C2 = D5×SD32φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16):4C2320,540
(D5×C16)⋊5C2 = SD323D5φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16):5C2320,543
(D5×C16)⋊6C2 = D20.6C8φ: C2/C1C2 ⊆ Out D5×C161602(D5xC16):6C2320,528
(D5×C16)⋊7C2 = D5×M5(2)φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16):7C2320,533
(D5×C16)⋊8C2 = D20.5C8φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16):8C2320,534

Non-split extensions G=N.Q with N=D5×C16 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C16).1C2 = D5×Q32φ: C2/C1C2 ⊆ Out D5×C161604-(D5xC16).1C2320,544
(D5×C16).2C2 = C802C4φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16).2C2320,187
(D5×C16).3C2 = C16.F5φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16).3C2320,189
(D5×C16).4C2 = C32⋊D5φ: C2/C1C2 ⊆ Out D5×C161602(D5xC16).4C2320,5
(D5×C16).5C2 = C803C4φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16).5C2320,188
(D5×C16).6C2 = C80.2C4φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16).6C2320,190
(D5×C16).7C2 = D5⋊C32φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16).7C2320,179
(D5×C16).8C2 = C80.C4φ: C2/C1C2 ⊆ Out D5×C161604(D5xC16).8C2320,180
(D5×C16).9C2 = C16×F5φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16).9C2320,181
(D5×C16).10C2 = C167F5φ: C2/C1C2 ⊆ Out D5×C16804(D5xC16).10C2320,182
(D5×C16).11C2 = D5×C32φ: trivial image1602(D5xC16).11C2320,4

׿
×
𝔽