Copied to
clipboard

G = C2.D87D5order 320 = 26·5

7th semidirect product of C2.D8 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2.D87D5, C4⋊C4.53D10, (C2×C8).30D10, C20.43(C4○D4), C4.83(C4○D20), C10.30(C4○D8), C10.Q1622C2, C20.Q822C2, (C22×D5).38D4, C22.234(D4×D5), D101C8.11C2, C20.44D427C2, C2.15(D83D5), (C2×C40).244C22, (C2×C20).304C23, D102Q8.10C2, C4.31(Q82D5), (C2×Dic5).225D4, C55(C23.20D4), C2.24(Q16⋊D5), C10.72(C8.C22), C4⋊Dic5.127C22, (C2×Dic10).96C22, C2.18(D10.13D4), C10.48(C22.D4), (C5×C2.D8)⋊14C2, C4⋊C47D5.9C2, (C2×C4×D5).46C22, (C2×C10).309(C2×D4), (C5×C4⋊C4).97C22, (C2×C52C8).73C22, (C2×C4).407(C22×D5), SmallGroup(320,515)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C2.D87D5
C1C5C10C2×C10C2×C20C2×C4×D5C4⋊C47D5 — C2.D87D5
C5C10C2×C20 — C2.D87D5
C1C22C2×C4C2.D8

Generators and relations for C2.D87D5
 G = < a,b,c,d,e | a2=b8=d5=e2=1, c2=a, ebe=ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, cd=dc, ece=ab4c, ede=d-1 >

Subgroups: 382 in 96 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22⋊Q8, C52C8, C40, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C23.20D4, C2×C52C8, C4×Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C20.Q8, C10.Q16, C20.44D4, D101C8, C5×C2.D8, C4⋊C47D5, D102Q8, C2.D87D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C4○D8, C8.C22, C22×D5, C23.20D4, C4○D20, D4×D5, Q82D5, D10.13D4, D83D5, Q16⋊D5, C2.D87D5

Smallest permutation representation of C2.D87D5
On 160 points
Generators in S160
(1 77)(2 78)(3 79)(4 80)(5 73)(6 74)(7 75)(8 76)(9 117)(10 118)(11 119)(12 120)(13 113)(14 114)(15 115)(16 116)(17 93)(18 94)(19 95)(20 96)(21 89)(22 90)(23 91)(24 92)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)(41 101)(42 102)(43 103)(44 104)(45 97)(46 98)(47 99)(48 100)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(65 124)(66 125)(67 126)(68 127)(69 128)(70 121)(71 122)(72 123)(105 138)(106 139)(107 140)(108 141)(109 142)(110 143)(111 144)(112 137)(145 157)(146 158)(147 159)(148 160)(149 153)(150 154)(151 155)(152 156)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 152 77 156)(2 151 78 155)(3 150 79 154)(4 149 80 153)(5 148 73 160)(6 147 74 159)(7 146 75 158)(8 145 76 157)(9 127 117 68)(10 126 118 67)(11 125 119 66)(12 124 120 65)(13 123 113 72)(14 122 114 71)(15 121 115 70)(16 128 116 69)(17 43 93 103)(18 42 94 102)(19 41 95 101)(20 48 96 100)(21 47 89 99)(22 46 90 98)(23 45 91 97)(24 44 92 104)(25 105 36 138)(26 112 37 137)(27 111 38 144)(28 110 39 143)(29 109 40 142)(30 108 33 141)(31 107 34 140)(32 106 35 139)(49 87 129 59)(50 86 130 58)(51 85 131 57)(52 84 132 64)(53 83 133 63)(54 82 134 62)(55 81 135 61)(56 88 136 60)
(1 61 24 37 66)(2 62 17 38 67)(3 63 18 39 68)(4 64 19 40 69)(5 57 20 33 70)(6 58 21 34 71)(7 59 22 35 72)(8 60 23 36 65)(9 150 53 42 143)(10 151 54 43 144)(11 152 55 44 137)(12 145 56 45 138)(13 146 49 46 139)(14 147 50 47 140)(15 148 51 48 141)(16 149 52 41 142)(25 124 76 88 91)(26 125 77 81 92)(27 126 78 82 93)(28 127 79 83 94)(29 128 80 84 95)(30 121 73 85 96)(31 122 74 86 89)(32 123 75 87 90)(97 105 120 157 136)(98 106 113 158 129)(99 107 114 159 130)(100 108 115 160 131)(101 109 116 153 132)(102 110 117 154 133)(103 111 118 155 134)(104 112 119 156 135)
(1 66)(2 126)(3 68)(4 128)(5 70)(6 122)(7 72)(8 124)(9 158)(10 147)(11 160)(12 149)(13 154)(14 151)(15 156)(16 145)(17 93)(19 95)(21 89)(23 91)(25 60)(26 81)(27 62)(28 83)(29 64)(30 85)(31 58)(32 87)(33 57)(34 86)(35 59)(36 88)(37 61)(38 82)(39 63)(40 84)(41 45)(42 98)(43 47)(44 100)(46 102)(48 104)(49 110)(50 144)(51 112)(52 138)(53 106)(54 140)(55 108)(56 142)(65 76)(67 78)(69 80)(71 74)(73 121)(75 123)(77 125)(79 127)(97 101)(99 103)(105 132)(107 134)(109 136)(111 130)(113 150)(114 155)(115 152)(116 157)(117 146)(118 159)(119 148)(120 153)(129 143)(131 137)(133 139)(135 141)

G:=sub<Sym(160)| (1,77)(2,78)(3,79)(4,80)(5,73)(6,74)(7,75)(8,76)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,93)(18,94)(19,95)(20,96)(21,89)(22,90)(23,91)(24,92)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(41,101)(42,102)(43,103)(44,104)(45,97)(46,98)(47,99)(48,100)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,124)(66,125)(67,126)(68,127)(69,128)(70,121)(71,122)(72,123)(105,138)(106,139)(107,140)(108,141)(109,142)(110,143)(111,144)(112,137)(145,157)(146,158)(147,159)(148,160)(149,153)(150,154)(151,155)(152,156), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,152,77,156)(2,151,78,155)(3,150,79,154)(4,149,80,153)(5,148,73,160)(6,147,74,159)(7,146,75,158)(8,145,76,157)(9,127,117,68)(10,126,118,67)(11,125,119,66)(12,124,120,65)(13,123,113,72)(14,122,114,71)(15,121,115,70)(16,128,116,69)(17,43,93,103)(18,42,94,102)(19,41,95,101)(20,48,96,100)(21,47,89,99)(22,46,90,98)(23,45,91,97)(24,44,92,104)(25,105,36,138)(26,112,37,137)(27,111,38,144)(28,110,39,143)(29,109,40,142)(30,108,33,141)(31,107,34,140)(32,106,35,139)(49,87,129,59)(50,86,130,58)(51,85,131,57)(52,84,132,64)(53,83,133,63)(54,82,134,62)(55,81,135,61)(56,88,136,60), (1,61,24,37,66)(2,62,17,38,67)(3,63,18,39,68)(4,64,19,40,69)(5,57,20,33,70)(6,58,21,34,71)(7,59,22,35,72)(8,60,23,36,65)(9,150,53,42,143)(10,151,54,43,144)(11,152,55,44,137)(12,145,56,45,138)(13,146,49,46,139)(14,147,50,47,140)(15,148,51,48,141)(16,149,52,41,142)(25,124,76,88,91)(26,125,77,81,92)(27,126,78,82,93)(28,127,79,83,94)(29,128,80,84,95)(30,121,73,85,96)(31,122,74,86,89)(32,123,75,87,90)(97,105,120,157,136)(98,106,113,158,129)(99,107,114,159,130)(100,108,115,160,131)(101,109,116,153,132)(102,110,117,154,133)(103,111,118,155,134)(104,112,119,156,135), (1,66)(2,126)(3,68)(4,128)(5,70)(6,122)(7,72)(8,124)(9,158)(10,147)(11,160)(12,149)(13,154)(14,151)(15,156)(16,145)(17,93)(19,95)(21,89)(23,91)(25,60)(26,81)(27,62)(28,83)(29,64)(30,85)(31,58)(32,87)(33,57)(34,86)(35,59)(36,88)(37,61)(38,82)(39,63)(40,84)(41,45)(42,98)(43,47)(44,100)(46,102)(48,104)(49,110)(50,144)(51,112)(52,138)(53,106)(54,140)(55,108)(56,142)(65,76)(67,78)(69,80)(71,74)(73,121)(75,123)(77,125)(79,127)(97,101)(99,103)(105,132)(107,134)(109,136)(111,130)(113,150)(114,155)(115,152)(116,157)(117,146)(118,159)(119,148)(120,153)(129,143)(131,137)(133,139)(135,141)>;

G:=Group( (1,77)(2,78)(3,79)(4,80)(5,73)(6,74)(7,75)(8,76)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,93)(18,94)(19,95)(20,96)(21,89)(22,90)(23,91)(24,92)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(41,101)(42,102)(43,103)(44,104)(45,97)(46,98)(47,99)(48,100)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,124)(66,125)(67,126)(68,127)(69,128)(70,121)(71,122)(72,123)(105,138)(106,139)(107,140)(108,141)(109,142)(110,143)(111,144)(112,137)(145,157)(146,158)(147,159)(148,160)(149,153)(150,154)(151,155)(152,156), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,152,77,156)(2,151,78,155)(3,150,79,154)(4,149,80,153)(5,148,73,160)(6,147,74,159)(7,146,75,158)(8,145,76,157)(9,127,117,68)(10,126,118,67)(11,125,119,66)(12,124,120,65)(13,123,113,72)(14,122,114,71)(15,121,115,70)(16,128,116,69)(17,43,93,103)(18,42,94,102)(19,41,95,101)(20,48,96,100)(21,47,89,99)(22,46,90,98)(23,45,91,97)(24,44,92,104)(25,105,36,138)(26,112,37,137)(27,111,38,144)(28,110,39,143)(29,109,40,142)(30,108,33,141)(31,107,34,140)(32,106,35,139)(49,87,129,59)(50,86,130,58)(51,85,131,57)(52,84,132,64)(53,83,133,63)(54,82,134,62)(55,81,135,61)(56,88,136,60), (1,61,24,37,66)(2,62,17,38,67)(3,63,18,39,68)(4,64,19,40,69)(5,57,20,33,70)(6,58,21,34,71)(7,59,22,35,72)(8,60,23,36,65)(9,150,53,42,143)(10,151,54,43,144)(11,152,55,44,137)(12,145,56,45,138)(13,146,49,46,139)(14,147,50,47,140)(15,148,51,48,141)(16,149,52,41,142)(25,124,76,88,91)(26,125,77,81,92)(27,126,78,82,93)(28,127,79,83,94)(29,128,80,84,95)(30,121,73,85,96)(31,122,74,86,89)(32,123,75,87,90)(97,105,120,157,136)(98,106,113,158,129)(99,107,114,159,130)(100,108,115,160,131)(101,109,116,153,132)(102,110,117,154,133)(103,111,118,155,134)(104,112,119,156,135), (1,66)(2,126)(3,68)(4,128)(5,70)(6,122)(7,72)(8,124)(9,158)(10,147)(11,160)(12,149)(13,154)(14,151)(15,156)(16,145)(17,93)(19,95)(21,89)(23,91)(25,60)(26,81)(27,62)(28,83)(29,64)(30,85)(31,58)(32,87)(33,57)(34,86)(35,59)(36,88)(37,61)(38,82)(39,63)(40,84)(41,45)(42,98)(43,47)(44,100)(46,102)(48,104)(49,110)(50,144)(51,112)(52,138)(53,106)(54,140)(55,108)(56,142)(65,76)(67,78)(69,80)(71,74)(73,121)(75,123)(77,125)(79,127)(97,101)(99,103)(105,132)(107,134)(109,136)(111,130)(113,150)(114,155)(115,152)(116,157)(117,146)(118,159)(119,148)(120,153)(129,143)(131,137)(133,139)(135,141) );

G=PermutationGroup([[(1,77),(2,78),(3,79),(4,80),(5,73),(6,74),(7,75),(8,76),(9,117),(10,118),(11,119),(12,120),(13,113),(14,114),(15,115),(16,116),(17,93),(18,94),(19,95),(20,96),(21,89),(22,90),(23,91),(24,92),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35),(41,101),(42,102),(43,103),(44,104),(45,97),(46,98),(47,99),(48,100),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(65,124),(66,125),(67,126),(68,127),(69,128),(70,121),(71,122),(72,123),(105,138),(106,139),(107,140),(108,141),(109,142),(110,143),(111,144),(112,137),(145,157),(146,158),(147,159),(148,160),(149,153),(150,154),(151,155),(152,156)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,152,77,156),(2,151,78,155),(3,150,79,154),(4,149,80,153),(5,148,73,160),(6,147,74,159),(7,146,75,158),(8,145,76,157),(9,127,117,68),(10,126,118,67),(11,125,119,66),(12,124,120,65),(13,123,113,72),(14,122,114,71),(15,121,115,70),(16,128,116,69),(17,43,93,103),(18,42,94,102),(19,41,95,101),(20,48,96,100),(21,47,89,99),(22,46,90,98),(23,45,91,97),(24,44,92,104),(25,105,36,138),(26,112,37,137),(27,111,38,144),(28,110,39,143),(29,109,40,142),(30,108,33,141),(31,107,34,140),(32,106,35,139),(49,87,129,59),(50,86,130,58),(51,85,131,57),(52,84,132,64),(53,83,133,63),(54,82,134,62),(55,81,135,61),(56,88,136,60)], [(1,61,24,37,66),(2,62,17,38,67),(3,63,18,39,68),(4,64,19,40,69),(5,57,20,33,70),(6,58,21,34,71),(7,59,22,35,72),(8,60,23,36,65),(9,150,53,42,143),(10,151,54,43,144),(11,152,55,44,137),(12,145,56,45,138),(13,146,49,46,139),(14,147,50,47,140),(15,148,51,48,141),(16,149,52,41,142),(25,124,76,88,91),(26,125,77,81,92),(27,126,78,82,93),(28,127,79,83,94),(29,128,80,84,95),(30,121,73,85,96),(31,122,74,86,89),(32,123,75,87,90),(97,105,120,157,136),(98,106,113,158,129),(99,107,114,159,130),(100,108,115,160,131),(101,109,116,153,132),(102,110,117,154,133),(103,111,118,155,134),(104,112,119,156,135)], [(1,66),(2,126),(3,68),(4,128),(5,70),(6,122),(7,72),(8,124),(9,158),(10,147),(11,160),(12,149),(13,154),(14,151),(15,156),(16,145),(17,93),(19,95),(21,89),(23,91),(25,60),(26,81),(27,62),(28,83),(29,64),(30,85),(31,58),(32,87),(33,57),(34,86),(35,59),(36,88),(37,61),(38,82),(39,63),(40,84),(41,45),(42,98),(43,47),(44,100),(46,102),(48,104),(49,110),(50,144),(51,112),(52,138),(53,106),(54,140),(55,108),(56,142),(65,76),(67,78),(69,80),(71,74),(73,121),(75,123),(77,125),(79,127),(97,101),(99,103),(105,132),(107,134),(109,136),(111,130),(113,150),(114,155),(115,152),(116,157),(117,146),(118,159),(119,148),(120,153),(129,143),(131,137),(133,139),(135,141)]])

47 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222444444444455888810···102020202020···2040···40
size111120224481010202040224420202···244448···84···4

47 irreducible representations

dim111111112222222244444
type+++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10C4○D8C4○D20C8.C22Q82D5D4×D5D83D5Q16⋊D5
kernelC2.D87D5C20.Q8C10.Q16C20.44D4D101C8C5×C2.D8C4⋊C47D5D102Q8C2×Dic5C22×D5C2.D8C20C4⋊C4C2×C8C10C4C10C4C22C2C2
# reps111111111124424812244

Matrix representation of C2.D87D5 in GL4(𝔽41) generated by

40000
04000
0010
0001
,
233500
61800
0030
003414
,
22800
133900
001535
001026
,
6100
40000
0010
0001
,
0100
1000
0010
00540
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[23,6,0,0,35,18,0,0,0,0,3,34,0,0,0,14],[2,13,0,0,28,39,0,0,0,0,15,10,0,0,35,26],[6,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,5,0,0,0,40] >;

C2.D87D5 in GAP, Magma, Sage, TeX

C_2.D_8\rtimes_7D_5
% in TeX

G:=Group("C2.D8:7D5");
// GroupNames label

G:=SmallGroup(320,515);
// by ID

G=gap.SmallGroup(320,515);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,64,254,219,268,851,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=d^5=e^2=1,c^2=a,e*b*e=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e=a*b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽