Copied to
clipboard

G = C4021(C2×C4)  order 320 = 26·5

11st semidirect product of C40 and C2×C4 acting via C2×C4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C86(C4×D5), C4021(C2×C4), C40⋊C27C4, C408C47C2, C2.D812D5, (C2×C8).67D10, C10.84(C4×D4), C4⋊C4.172D10, D20.23(C2×C4), C22.92(D4×D5), Dic1016(C2×C4), Dic53Q87C2, D206C4.7C2, D208C4.7C2, C20.44(C4○D4), C2.6(D8⋊D5), C10.Q1623C2, C55(SD16⋊C4), C10.44(C8⋊C22), (C2×C20).305C23, C20.110(C22×C4), (C2×C40).145C22, C4.12(Q82D5), C2.6(Q16⋊D5), (C2×Dic5).226D4, (C2×D20).89C22, C2.14(D208C4), C10.73(C8.C22), (C4×Dic5).43C22, (C2×Dic10).97C22, C4.45(C2×C4×D5), (C5×C2.D8)⋊9C2, (C2×C40⋊C2).7C2, (C2×C10).310(C2×D4), (C5×C4⋊C4).98C22, (C2×C52C8).74C22, (C2×C4).408(C22×D5), SmallGroup(320,516)

Series: Derived Chief Lower central Upper central

C1C20 — C4021(C2×C4)
C1C5C10C2×C10C2×C20C2×D20C2×C40⋊C2 — C4021(C2×C4)
C5C10C20 — C4021(C2×C4)
C1C22C2×C4C2.D8

Generators and relations for C4021(C2×C4)
 G = < a,b,c | a40=b2=c4=1, bab=a19, cac-1=a31, bc=cb >

Subgroups: 502 in 120 conjugacy classes, 49 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C4×D4, C4×Q8, C2×SD16, C52C8, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, SD16⋊C4, C40⋊C2, C2×C52C8, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, D206C4, C10.Q16, C408C4, C5×C2.D8, Dic53Q8, D208C4, C2×C40⋊C2, C4021(C2×C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C8⋊C22, C8.C22, C4×D5, C22×D5, SD16⋊C4, C2×C4×D5, D4×D5, Q82D5, D208C4, D8⋊D5, Q16⋊D5, C4021(C2×C4)

Smallest permutation representation of C4021(C2×C4)
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 59)(42 78)(43 57)(44 76)(45 55)(46 74)(47 53)(48 72)(49 51)(50 70)(52 68)(54 66)(56 64)(58 62)(61 79)(63 77)(65 75)(67 73)(69 71)(81 119)(82 98)(83 117)(84 96)(85 115)(86 94)(87 113)(88 92)(89 111)(91 109)(93 107)(95 105)(97 103)(99 101)(100 120)(102 118)(104 116)(106 114)(108 112)(121 139)(122 158)(123 137)(124 156)(125 135)(126 154)(127 133)(128 152)(129 131)(130 150)(132 148)(134 146)(136 144)(138 142)(141 159)(143 157)(145 155)(147 153)(149 151)
(1 80 90 140)(2 71 91 131)(3 62 92 122)(4 53 93 153)(5 44 94 144)(6 75 95 135)(7 66 96 126)(8 57 97 157)(9 48 98 148)(10 79 99 139)(11 70 100 130)(12 61 101 121)(13 52 102 152)(14 43 103 143)(15 74 104 134)(16 65 105 125)(17 56 106 156)(18 47 107 147)(19 78 108 138)(20 69 109 129)(21 60 110 160)(22 51 111 151)(23 42 112 142)(24 73 113 133)(25 64 114 124)(26 55 115 155)(27 46 116 146)(28 77 117 137)(29 68 118 128)(30 59 119 159)(31 50 120 150)(32 41 81 141)(33 72 82 132)(34 63 83 123)(35 54 84 154)(36 45 85 145)(37 76 86 136)(38 67 87 127)(39 58 88 158)(40 49 89 149)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,59)(42,78)(43,57)(44,76)(45,55)(46,74)(47,53)(48,72)(49,51)(50,70)(52,68)(54,66)(56,64)(58,62)(61,79)(63,77)(65,75)(67,73)(69,71)(81,119)(82,98)(83,117)(84,96)(85,115)(86,94)(87,113)(88,92)(89,111)(91,109)(93,107)(95,105)(97,103)(99,101)(100,120)(102,118)(104,116)(106,114)(108,112)(121,139)(122,158)(123,137)(124,156)(125,135)(126,154)(127,133)(128,152)(129,131)(130,150)(132,148)(134,146)(136,144)(138,142)(141,159)(143,157)(145,155)(147,153)(149,151), (1,80,90,140)(2,71,91,131)(3,62,92,122)(4,53,93,153)(5,44,94,144)(6,75,95,135)(7,66,96,126)(8,57,97,157)(9,48,98,148)(10,79,99,139)(11,70,100,130)(12,61,101,121)(13,52,102,152)(14,43,103,143)(15,74,104,134)(16,65,105,125)(17,56,106,156)(18,47,107,147)(19,78,108,138)(20,69,109,129)(21,60,110,160)(22,51,111,151)(23,42,112,142)(24,73,113,133)(25,64,114,124)(26,55,115,155)(27,46,116,146)(28,77,117,137)(29,68,118,128)(30,59,119,159)(31,50,120,150)(32,41,81,141)(33,72,82,132)(34,63,83,123)(35,54,84,154)(36,45,85,145)(37,76,86,136)(38,67,87,127)(39,58,88,158)(40,49,89,149)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,59)(42,78)(43,57)(44,76)(45,55)(46,74)(47,53)(48,72)(49,51)(50,70)(52,68)(54,66)(56,64)(58,62)(61,79)(63,77)(65,75)(67,73)(69,71)(81,119)(82,98)(83,117)(84,96)(85,115)(86,94)(87,113)(88,92)(89,111)(91,109)(93,107)(95,105)(97,103)(99,101)(100,120)(102,118)(104,116)(106,114)(108,112)(121,139)(122,158)(123,137)(124,156)(125,135)(126,154)(127,133)(128,152)(129,131)(130,150)(132,148)(134,146)(136,144)(138,142)(141,159)(143,157)(145,155)(147,153)(149,151), (1,80,90,140)(2,71,91,131)(3,62,92,122)(4,53,93,153)(5,44,94,144)(6,75,95,135)(7,66,96,126)(8,57,97,157)(9,48,98,148)(10,79,99,139)(11,70,100,130)(12,61,101,121)(13,52,102,152)(14,43,103,143)(15,74,104,134)(16,65,105,125)(17,56,106,156)(18,47,107,147)(19,78,108,138)(20,69,109,129)(21,60,110,160)(22,51,111,151)(23,42,112,142)(24,73,113,133)(25,64,114,124)(26,55,115,155)(27,46,116,146)(28,77,117,137)(29,68,118,128)(30,59,119,159)(31,50,120,150)(32,41,81,141)(33,72,82,132)(34,63,83,123)(35,54,84,154)(36,45,85,145)(37,76,86,136)(38,67,87,127)(39,58,88,158)(40,49,89,149) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,59),(42,78),(43,57),(44,76),(45,55),(46,74),(47,53),(48,72),(49,51),(50,70),(52,68),(54,66),(56,64),(58,62),(61,79),(63,77),(65,75),(67,73),(69,71),(81,119),(82,98),(83,117),(84,96),(85,115),(86,94),(87,113),(88,92),(89,111),(91,109),(93,107),(95,105),(97,103),(99,101),(100,120),(102,118),(104,116),(106,114),(108,112),(121,139),(122,158),(123,137),(124,156),(125,135),(126,154),(127,133),(128,152),(129,131),(130,150),(132,148),(134,146),(136,144),(138,142),(141,159),(143,157),(145,155),(147,153),(149,151)], [(1,80,90,140),(2,71,91,131),(3,62,92,122),(4,53,93,153),(5,44,94,144),(6,75,95,135),(7,66,96,126),(8,57,97,157),(9,48,98,148),(10,79,99,139),(11,70,100,130),(12,61,101,121),(13,52,102,152),(14,43,103,143),(15,74,104,134),(16,65,105,125),(17,56,106,156),(18,47,107,147),(19,78,108,138),(20,69,109,129),(21,60,110,160),(22,51,111,151),(23,42,112,142),(24,73,113,133),(25,64,114,124),(26,55,115,155),(27,46,116,146),(28,77,117,137),(29,68,118,128),(30,59,119,159),(31,50,120,150),(32,41,81,141),(33,72,82,132),(34,63,83,123),(35,54,84,154),(36,45,85,145),(37,76,86,136),(38,67,87,127),(39,58,88,158),(40,49,89,149)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222244444444444455888810···102020202020···2040···40
size11112020224444101010102020224420202···244448···84···4

50 irreducible representations

dim111111111222222444444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2C4D4D5C4○D4D10D10C4×D5C8⋊C22C8.C22Q82D5D4×D5D8⋊D5Q16⋊D5
kernelC4021(C2×C4)D206C4C10.Q16C408C4C5×C2.D8Dic53Q8D208C4C2×C40⋊C2C40⋊C2C2×Dic5C2.D8C20C4⋊C4C2×C8C8C10C10C4C22C2C2
# reps111111118222428112244

Matrix representation of C4021(C2×C4) in GL6(𝔽41)

24250000
13170000
002313910
0010313110
0013600
0053600
,
100000
3400000
001000
00344000
0010400
00344071
,
3200000
1490000
0015142513
0027402816
00702627
0007141

G:=sub<GL(6,GF(41))| [24,13,0,0,0,0,25,17,0,0,0,0,0,0,2,10,1,5,0,0,31,31,36,36,0,0,39,31,0,0,0,0,10,10,0,0],[1,3,0,0,0,0,0,40,0,0,0,0,0,0,1,34,1,34,0,0,0,40,0,40,0,0,0,0,40,7,0,0,0,0,0,1],[32,14,0,0,0,0,0,9,0,0,0,0,0,0,15,27,7,0,0,0,14,40,0,7,0,0,25,28,26,14,0,0,13,16,27,1] >;

C4021(C2×C4) in GAP, Magma, Sage, TeX

C_{40}\rtimes_{21}(C_2\times C_4)
% in TeX

G:=Group("C40:21(C2xC4)");
// GroupNames label

G:=SmallGroup(320,516);
// by ID

G=gap.SmallGroup(320,516);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,219,58,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=a^19,c*a*c^-1=a^31,b*c=c*b>;
// generators/relations

׿
×
𝔽