Copied to
clipboard

G = C206M4(2)  order 320 = 26·5

2nd semidirect product of C20 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C206M4(2), C42.204D10, C4⋊C814D5, C52C817D4, C56(C86D4), C41(C8⋊D5), (C4×D20).9C2, C4.208(D4×D5), C10.78(C4×D4), (C2×D20).25C4, C20.367(C2×D4), (C2×C8).183D10, C4⋊Dic5.31C4, D101C824C2, C10.53(C8○D4), (C4×C20).64C22, D10⋊C4.22C4, C20.336(C4○D4), C2.8(D208C4), (C2×C40).214C22, (C2×C20).835C23, C4.56(Q82D5), C10.43(C2×M4(2)), C2.13(D20.2C4), (C5×C4⋊C8)⋊19C2, (C4×C52C8)⋊5C2, (C2×C4).73(C4×D5), (C2×C8⋊D5)⋊22C2, C2.14(C2×C8⋊D5), C22.113(C2×C4×D5), (C2×C20).332(C2×C4), (C2×C4×D5).232C22, (C2×Dic5).25(C2×C4), (C22×D5).21(C2×C4), (C2×C4).777(C22×D5), (C2×C10).191(C22×C4), (C2×C52C8).315C22, SmallGroup(320,465)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C206M4(2)
C1C5C10C20C2×C20C2×C4×D5C4×D20 — C206M4(2)
C5C2×C10 — C206M4(2)
C1C2×C4C4⋊C8

Generators and relations for C206M4(2)
 G = < a,b,c | a20=b8=c2=1, bab-1=a9, cac=a-1, cbc=b5 >

Subgroups: 446 in 122 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, Dic5, C20, C20, C20, D10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C52C8, C52C8, C40, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C86D4, C8⋊D5, C2×C52C8, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C2×D20, C4×C52C8, D101C8, C5×C4⋊C8, C4×D20, C2×C8⋊D5, C206M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, M4(2), C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×M4(2), C8○D4, C4×D5, C22×D5, C86D4, C8⋊D5, C2×C4×D5, D4×D5, Q82D5, D208C4, C2×C8⋊D5, D20.2C4, C206M4(2)

Smallest permutation representation of C206M4(2)
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 48 104 35 81 146 73 121)(2 57 105 24 82 155 74 130)(3 46 106 33 83 144 75 139)(4 55 107 22 84 153 76 128)(5 44 108 31 85 142 77 137)(6 53 109 40 86 151 78 126)(7 42 110 29 87 160 79 135)(8 51 111 38 88 149 80 124)(9 60 112 27 89 158 61 133)(10 49 113 36 90 147 62 122)(11 58 114 25 91 156 63 131)(12 47 115 34 92 145 64 140)(13 56 116 23 93 154 65 129)(14 45 117 32 94 143 66 138)(15 54 118 21 95 152 67 127)(16 43 119 30 96 141 68 136)(17 52 120 39 97 150 69 125)(18 41 101 28 98 159 70 134)(19 50 102 37 99 148 71 123)(20 59 103 26 100 157 72 132)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 135)(22 134)(23 133)(24 132)(25 131)(26 130)(27 129)(28 128)(29 127)(30 126)(31 125)(32 124)(33 123)(34 122)(35 121)(36 140)(37 139)(38 138)(39 137)(40 136)(41 153)(42 152)(43 151)(44 150)(45 149)(46 148)(47 147)(48 146)(49 145)(50 144)(51 143)(52 142)(53 141)(54 160)(55 159)(56 158)(57 157)(58 156)(59 155)(60 154)(61 65)(62 64)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)(82 100)(83 99)(84 98)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)(101 107)(102 106)(103 105)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48,104,35,81,146,73,121)(2,57,105,24,82,155,74,130)(3,46,106,33,83,144,75,139)(4,55,107,22,84,153,76,128)(5,44,108,31,85,142,77,137)(6,53,109,40,86,151,78,126)(7,42,110,29,87,160,79,135)(8,51,111,38,88,149,80,124)(9,60,112,27,89,158,61,133)(10,49,113,36,90,147,62,122)(11,58,114,25,91,156,63,131)(12,47,115,34,92,145,64,140)(13,56,116,23,93,154,65,129)(14,45,117,32,94,143,66,138)(15,54,118,21,95,152,67,127)(16,43,119,30,96,141,68,136)(17,52,120,39,97,150,69,125)(18,41,101,28,98,159,70,134)(19,50,102,37,99,148,71,123)(20,59,103,26,100,157,72,132), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,140)(37,139)(38,138)(39,137)(40,136)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,160)(55,159)(56,158)(57,157)(58,156)(59,155)(60,154)(61,65)(62,64)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(101,107)(102,106)(103,105)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,48,104,35,81,146,73,121)(2,57,105,24,82,155,74,130)(3,46,106,33,83,144,75,139)(4,55,107,22,84,153,76,128)(5,44,108,31,85,142,77,137)(6,53,109,40,86,151,78,126)(7,42,110,29,87,160,79,135)(8,51,111,38,88,149,80,124)(9,60,112,27,89,158,61,133)(10,49,113,36,90,147,62,122)(11,58,114,25,91,156,63,131)(12,47,115,34,92,145,64,140)(13,56,116,23,93,154,65,129)(14,45,117,32,94,143,66,138)(15,54,118,21,95,152,67,127)(16,43,119,30,96,141,68,136)(17,52,120,39,97,150,69,125)(18,41,101,28,98,159,70,134)(19,50,102,37,99,148,71,123)(20,59,103,26,100,157,72,132), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,140)(37,139)(38,138)(39,137)(40,136)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,160)(55,159)(56,158)(57,157)(58,156)(59,155)(60,154)(61,65)(62,64)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(101,107)(102,106)(103,105)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,48,104,35,81,146,73,121),(2,57,105,24,82,155,74,130),(3,46,106,33,83,144,75,139),(4,55,107,22,84,153,76,128),(5,44,108,31,85,142,77,137),(6,53,109,40,86,151,78,126),(7,42,110,29,87,160,79,135),(8,51,111,38,88,149,80,124),(9,60,112,27,89,158,61,133),(10,49,113,36,90,147,62,122),(11,58,114,25,91,156,63,131),(12,47,115,34,92,145,64,140),(13,56,116,23,93,154,65,129),(14,45,117,32,94,143,66,138),(15,54,118,21,95,152,67,127),(16,43,119,30,96,141,68,136),(17,52,120,39,97,150,69,125),(18,41,101,28,98,159,70,134),(19,50,102,37,99,148,71,123),(20,59,103,26,100,157,72,132)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,135),(22,134),(23,133),(24,132),(25,131),(26,130),(27,129),(28,128),(29,127),(30,126),(31,125),(32,124),(33,123),(34,122),(35,121),(36,140),(37,139),(38,138),(39,137),(40,136),(41,153),(42,152),(43,151),(44,150),(45,149),(46,148),(47,147),(48,146),(49,145),(50,144),(51,143),(52,142),(53,141),(54,160),(55,159),(56,158),(57,157),(58,156),(59,155),(60,154),(61,65),(62,64),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74),(82,100),(83,99),(84,98),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92),(101,107),(102,106),(103,105),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115)]])

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E···8L10A···10F20A···20H20I···20P40A···40P
order12222244444444445588888···810···1020···2020···2040···40
size1111202011112222202022444410···102···22···24···44···4

68 irreducible representations

dim111111111222222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4D4D5M4(2)C4○D4D10D10C8○D4C4×D5C8⋊D5D4×D5Q82D5D20.2C4
kernelC206M4(2)C4×C52C8D101C8C5×C4⋊C8C4×D20C2×C8⋊D5C4⋊Dic5D10⋊C4C2×D20C52C8C4⋊C8C20C20C42C2×C8C10C2×C4C4C4C4C2
# reps1121122422242244816224

Matrix representation of C206M4(2) in GL6(𝔽41)

110000
560000
00211800
00212000
000010
000001
,
670000
36350000
0040000
0004000
000015
00001840
,
670000
36350000
001000
00254000
000010
00001640

G:=sub<GL(6,GF(41))| [1,5,0,0,0,0,1,6,0,0,0,0,0,0,21,21,0,0,0,0,18,20,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,36,0,0,0,0,7,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,18,0,0,0,0,5,40],[6,36,0,0,0,0,7,35,0,0,0,0,0,0,1,25,0,0,0,0,0,40,0,0,0,0,0,0,1,16,0,0,0,0,0,40] >;

C206M4(2) in GAP, Magma, Sage, TeX

C_{20}\rtimes_6M_4(2)
% in TeX

G:=Group("C20:6M4(2)");
// GroupNames label

G:=SmallGroup(320,465);
// by ID

G=gap.SmallGroup(320,465);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,758,219,58,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^9,c*a*c=a^-1,c*b*c=b^5>;
// generators/relations

׿
×
𝔽